
Package index
-
brs() - Fit a beta interval regression model
-
brs_fit_fixed() - Fit a fixed-dispersion beta interval regression model
-
brs_fit_var() - Fit a variable-dispersion beta interval regression model
-
brs_coef() - Internal coefficient table (deprecated, use brs_est() or summary())
-
brs_sim() - Simulate data from beta interval models
-
coef(<brs>) - Extract model coefficients
-
vcov(<brs>) - Variance-covariance matrix of estimated coefficients
-
summary(<brs>) - Summarize a fitted model (betareg style)
-
print(<brs>) - Print a fitted model (brief betareg style)
-
print(<summary.brs>) - Print a model summary (betareg style)
-
logLik(<brs>) - Extract log-likelihood
-
AIC(<brs>) - Akaike information criterion
-
BIC(<brs>) - Bayesian information criterion
-
nobs(<brs>) - Number of observations
-
formula(<brs>) - Extract model formula
-
model.matrix(<brs>) - Extract design matrix
-
fitted(<brs>) - Extract fitted values
-
residuals(<brs>) - Extract residuals
-
predict(<brs>) - Predict from a fitted model
-
confint(<brs>) - Wald confidence intervals
-
plot(<brs>) - Diagnostic plots for beta interval regression
-
brs_cens() - Graphical and tabular censoring summary
-
brs_est() - Coefficient estimates with inference
-
brs_gof() - Goodness-of-fit measures
-
brs_hessian() - Extract the Hessian matrix
-
autoplot.brs() - ggplot2 autoplot for brs models
-
brs_table() - Compare fitted brs models in a single table
-
brs_marginaleffects() - Marginal effects for brs models
-
brs_predict_scoreprob() - Predict score probabilities from a fitted brs model
-
brs_cv() - K-fold cross-validation for brs models
-
brs_prep() - Pre-process analyst data for beta interval regression
-
brs_check() - Transform and validate a scale-derived response variable
-
brs_repar() - Reparameterize (mu, phi) into beta shape parameters