Skip to contents

Model Fitting

Core functions for fitting beta interval regression models.

brs()
Fit a beta interval regression model
brs_fit_fixed()
Fit a fixed-dispersion beta interval regression model
brs_fit_var()
Fit a variable-dispersion beta interval regression model
brs_coef()
Internal coefficient table (deprecated, use brs_est() or summary())

Simulation

Data simulation for Monte Carlo studies.

brs_sim()
Simulate data from beta interval models

S3 Methods

Standard methods for fitted model objects of class brs.

coef(<brs>)
Extract model coefficients
vcov(<brs>)
Variance-covariance matrix of estimated coefficients
summary(<brs>)
Summarize a fitted model (betareg style)
print(<brs>)
Print a fitted model (brief betareg style)
print(<summary.brs>)
Print a model summary (betareg style)
logLik(<brs>)
Extract log-likelihood
AIC(<brs>)
Akaike information criterion
BIC(<brs>)
Bayesian information criterion
nobs(<brs>)
Number of observations
formula(<brs>)
Extract model formula
model.matrix(<brs>)
Extract design matrix
fitted(<brs>)
Extract fitted values
residuals(<brs>)
Extract residuals
predict(<brs>)
Predict from a fitted model
confint(<brs>)
Wald confidence intervals
plot(<brs>)
Diagnostic plots for beta interval regression

Diagnostics and Summaries

Functions for model diagnostics and censoring summaries.

brs_cens()
Graphical and tabular censoring summary
brs_est()
Coefficient estimates with inference
brs_gof()
Goodness-of-fit measures
brs_hessian()
Extract the Hessian matrix
autoplot.brs()
ggplot2 autoplot for brs models

Analyst Tools

Post-estimation tables, effects, score probabilities, and validation.

brs_table()
Compare fitted brs models in a single table
brs_marginaleffects()
Marginal effects for brs models
brs_predict_scoreprob()
Predict score probabilities from a fitted brs model
brs_cv()
K-fold cross-validation for brs models

Data Preparation

Functions for preparing response data and beta reparameterization.

brs_prep()
Pre-process analyst data for beta interval regression
brs_check()
Transform and validate a scale-derived response variable
brs_repar()
Reparameterize (mu, phi) into beta shape parameters