Performs repeated k-fold cross-validation for brs models.
Value
A data frame with one row per fold and columns:
repeat, fold, n_train, n_test,
log_score, rmse_yt, mae_yt, converged,
and error. The object has class "brs_cv".
Details
The log_score is the mean log predictive contribution under the
complete likelihood contribution implied by each observation's
censoring type (delta).
References
Hawker, G. A., Mian, S., Kendzerska, T., and French, M. (2011). Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care and Research, 63(S11), S240-S252. doi:10.1002/acr.20543.
Hjermstad, M. J., Fayers, P. M., Haugen, D. F., et al. (2011). Studies comparing Numerical Rating Scales, Verbal Rating Scales, and Visual Analogue Scales for assessment of pain intensity in adults: a systematic literature review. Journal of Pain and Symptom Management, 41(6), 1073-1093. doi:10.1016/j.jpainsymman.2010.08.016.
Examples
# \donttest{
set.seed(99)
d <- data.frame(x1 = rnorm(150), x2 = rnorm(150))
sim <- brs_sim(
formula = ~ x1 + x2, data = d,
beta = c(0.2, -0.5, 0.3), phi = 0.2, ncuts = 100, repar = 2
)
cv <- brs_cv(y ~ x1 + x2, data = sim, k = 3, repeats = 1, repar = 2)
cv
#> repeat fold n_train n_test log_score rmse_yt mae_yt converged error
#> 1 1 1 100 50 -4.102422 0.3993795 0.3618229 TRUE <NA>
#> 2 1 2 100 50 -4.436561 0.3532272 0.3135323 TRUE <NA>
#> 3 1 3 100 50 -4.011085 0.3558378 0.3308460 TRUE <NA>
# }
