Produces ggplot2 diagnostics tailored to interval-censored scale models.
Usage
autoplot.brs(
object,
type = c("calibration", "score_dist", "cdf", "residuals_by_delta"),
bins = 10L,
scores = NULL,
newdata = NULL,
n_grid = 200L,
max_curves = 6L,
residual_type = "rqr",
...
)Arguments
- object
A fitted
"brs"object.- type
Plot type:
"calibration","score_dist","cdf", or"residuals_by_delta".- bins
Number of bins used in calibration plots.
- scores
Optional integer vector of scores for
"score_dist". Defaults to all scores from0toncuts.- newdata
Optional data frame of covariate scenarios used by
type = "cdf".- n_grid
Number of points on \((0,1)\) used to draw CDF curves.
- max_curves
Maximum number of CDF curves shown when
newdatais not provided.- residual_type
Residual type passed to
residuals.brsfortype = "residuals_by_delta".- ...
Currently ignored.
Details
type = "calibration" bins predictions and compares mean observed vs
mean predicted response in each bin.
type = "score_dist" compares observed score frequencies against
expected frequencies implied by the fitted beta interval model.
References
Hawker, G. A., Mian, S., Kendzerska, T., and French, M. (2011). Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care and Research, 63(S11), S240-S252. doi:10.1002/acr.20543.
Hjermstad, M. J., Fayers, P. M., Haugen, D. F., et al. (2011). Studies comparing Numerical Rating Scales, Verbal Rating Scales, and Visual Analogue Scales for assessment of pain intensity in adults: a systematic literature review. Journal of Pain and Symptom Management, 41(6), 1073-1093. doi:10.1016/j.jpainsymman.2010.08.016.
Examples
# \donttest{
if (requireNamespace("ggplot2", quietly = TRUE)) {
set.seed(100)
dat <- data.frame(x1 = rnorm(120), x2 = rnorm(120))
sim <- brs_sim(
formula = ~ x1 + x2, data = dat,
beta = c(0.1, -0.3, 0.2), phi = 0.2, ncuts = 100, repar = 2
)
fit <- brs(y ~ x1 + x2, data = sim, repar = 2)
autoplot.brs(fit, type = "calibration")
autoplot.brs(fit, type = "score_dist")
}
# }
