Estimates the parameters of a beta regression model with a single (scalar) dispersion parameter using maximum likelihood. The log-likelihood and its gradient are evaluated by the compiled C++ backend supporting the complete likelihood with mixed censoring types (Lopes, 2024, Eq. 2.24).
Arguments
- formula
Two-sided formula
y ~ x1 + x2 + ....- data
Data frame.
- link
Mean link function (default
"logit").- link_phi
Dispersion link function (default
"logit").- ncuts
Number of scale categories (default 100).
- lim
Uncertainty half-width (default 0.5).
- hessian_method
Character:
"numDeriv"(default) or"optim". With"numDeriv"the Hessian is computed after convergence usinghessian, which is typically more accurate than the built-in optim Hessian.- repar
Reparameterization scheme (default 2).
- method
Optimization method:
"BFGS"(default) or"L-BFGS-B".
References
Hawker, G. A., Mian, S., Kendzerska, T., and French, M. (2011). Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care and Research, 63(S11), S240-S252. doi:10.1002/acr.20543.
Hjermstad, M. J., Fayers, P. M., Haugen, D. F., et al. (2011). Studies comparing Numerical Rating Scales, Verbal Rating Scales, and Visual Analogue Scales for assessment of pain intensity in adults: a systematic literature review. Journal of Pain and Symptom Management, 41(6), 1073-1093. doi:10.1016/j.jpainsymman.2010.08.016.
Examples
set.seed(42)
n <- 100
dat <- data.frame(x1 = rnorm(n), x2 = rnorm(n))
sim <- brs_sim(
formula = ~ x1 + x2, data = dat,
beta = c(0.2, -0.5, 0.3), phi = 1 / 5
)
fit <- brs_fit_fixed(
formula = y ~ x1 + x2, data = sim,
link = "logit", link_phi = "logit"
)
print(fit)
#>
#> Call:
#> brs_fit_fixed(formula = y ~ x1 + x2, data = sim, link = "logit",
#> link_phi = "logit")
#>
#> Coefficients (mean model with logit link):
#> (Intercept) x1 x2
#> 0.0969 -0.5117 0.1147
#>
#> Phi coefficients (precision model with logit link):
#> (phi)
#> 0.1612
#>
