Skip to contents

Fits a beta interval-censored mixed model with Gaussian random intercepts using marginal maximum likelihood. The current implementation supports random = ~ 1 | group and uses a Laplace approximation for group-specific integrals.

Usage

brsmm(
  formula,
  random = ~1 | id,
  data,
  link = "logit",
  link_phi = "logit",
  repar = 2L,
  ncuts = 100L,
  lim = 0.5,
  int_method = c("laplace", "aghq", "qmc"),
  n_points = 11L,
  qmc_points = 1024L,
  start = NULL,
  method = c("BFGS", "L-BFGS-B"),
  hessian_method = c("numDeriv", "optim"),
  control = list(maxit = 2000L),
  seed = NULL
)

Arguments

formula

Model formula. Supports one- or two-part formulas: y ~ x1 + x2 or y ~ x1 + x2 | z1 + z2.

random

Random-effects specification. The supported format is ~ 1 | group.

data

Data frame.

Mean link function.

Precision link function.

repar

Beta reparameterization code (0, 1, 2).

ncuts

Number of categories on the original scale.

lim

Half-width used to construct interval endpoints.

int_method

Integration method. Currently, only "laplace" is implemented.

n_points

Reserved for future AGHQ support.

qmc_points

Reserved for future QMC support.

start

Optional numeric vector of starting values (beta, gamma, log_sigma_b).

method

Optimizer passed to optim.

hessian_method

"numDeriv" (default) or "optim".

control

Control list for optim.

seed

Optional seed used by integration methods that depend on randomized points (reserved for future use).

Value

An object of class "brsmm".

Details

The conditional contribution for each observation follows the same mixed censoring likelihood used by brs:

  1. \(\delta=0\): exact contribution via beta density,

  2. \(\delta=1\): left-censored contribution via beta CDF,

  3. \(\delta=2\): right-censored contribution via survival CDF,

  4. \(\delta=3\): interval contribution via CDF difference.

For group \(i\), the random intercept \(b_i \sim N(0, \sigma_b^2)\) is integrated out numerically via Laplace approximation.

References

Lopes, J. E. (2024). Beta Regression for Interval-Censored Scale-Derived Outcomes. MSc Dissertation, PPGMNE/UFPR.

Ferrari, S. and Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions. Journal of Applied Statistics, 31(7), 799–815.

Examples

# \donttest{
set.seed(123)
g <- 15
ni <- 8
id <- factor(rep(seq_len(g), each = ni))
n <- length(id)
x1 <- rnorm(n)
b <- rnorm(g, sd = 0.5)
eta_mu <- 0.2 + 0.6 * x1 + b[as.integer(id)]
mu <- plogis(eta_mu)
phi <- plogis(-0.2 + 0.2 * x1)
shp <- brs_repar(mu = mu, phi = phi, repar = 2)
y <- round(stats::rbeta(n, shp$shape1, shp$shape2) * 100)
d <- data.frame(y = y, x1 = x1, id = id)

fit_mm <- brsmm(y ~ x1, random = ~ 1 | id, data = d, repar = 2)
fit_mm
#> 
#> Call:
#> brsmm(formula = y ~ x1, random = ~1 | id, data = d, repar = 2)
#> 
#> Mixed beta interval model (Laplace)
#> Observations: 120  | Groups: 15 
#> Log-likelihood: -499.3888 
#> Random SD: 0.2206 
#> Convergence code: 0 
# }