Skip to contents

Computes the negative log-likelihood function for the McDonald (Mc) distribution (also known as Beta Power) with parameters gamma (\(\gamma\)), delta (\(\delta\)), and lambda (\(\lambda\)), given a vector of observations. This distribution is the special case of the Generalized Kumaraswamy (GKw) distribution where \(\alpha = 1\) and \(\beta = 1\). This function is suitable for maximum likelihood estimation.

Usage

llmc(par, data)

Arguments

par

A numeric vector of length 3 containing the distribution parameters in the order: gamma (\(\gamma > 0\)), delta (\(\delta \ge 0\)), lambda (\(\lambda > 0\)).

data

A numeric vector of observations. All values must be strictly between 0 and 1 (exclusive).

Value

Returns a single double value representing the negative log-likelihood (\(-\ell(\theta|\mathbf{x})\)). Returns Inf if any parameter values in par are invalid according to their constraints, or if any value in data is not in the interval (0, 1).

Details

The McDonald (Mc) distribution is the GKw distribution (dmc) with \(\alpha=1\) and \(\beta=1\). Its probability density function (PDF) is: $$ f(x | \theta) = \frac{\lambda}{B(\gamma,\delta+1)} x^{\gamma \lambda - 1} (1 - x^\lambda)^\delta $$ for \(0 < x < 1\), \(\theta = (\gamma, \delta, \lambda)\), and \(B(a,b)\) is the Beta function (beta). The log-likelihood function \(\ell(\theta | \mathbf{x})\) for a sample \(\mathbf{x} = (x_1, \dots, x_n)\) is \(\sum_{i=1}^n \ln f(x_i | \theta)\): $$ \ell(\theta | \mathbf{x}) = n[\ln(\lambda) - \ln B(\gamma, \delta+1)] + \sum_{i=1}^{n} [(\gamma\lambda - 1)\ln(x_i) + \delta\ln(1 - x_i^\lambda)] $$ This function computes and returns the negative log-likelihood, \(-\ell(\theta|\mathbf{x})\), suitable for minimization using optimization routines like optim. Numerical stability is maintained, including using the log-gamma function (lgamma) for the Beta function term.

References

McDonald, J. B. (1984). Some generalized functions for the size distribution of income. Econometrica, 52(3), 647-663.

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79-88.

See also

llgkw (parent distribution negative log-likelihood), dmc, pmc, qmc, rmc, grmc (gradient, if available), hsmc (Hessian, if available), optim, lbeta

Author

Lopes, J. E.

Examples

# \donttest{
## Example 1: Basic Log-Likelihood Evaluation

# Generate sample data with more stable parameters
set.seed(123)
n <- 1000
true_params <- c(gamma = 2.0, delta = 2.5, lambda = 1.5)
data <- rmc(n, gamma = true_params[1], delta = true_params[2],
            lambda = true_params[3])

# Evaluate negative log-likelihood at true parameters
nll_true <- llmc(par = true_params, data = data)
cat("Negative log-likelihood at true parameters:", nll_true, "\n")
#> Negative log-likelihood at true parameters: -309.7459 

# Evaluate at different parameter values
test_params <- rbind(
  c(1.5, 2.0, 1.0),
  c(2.0, 2.5, 1.5),
  c(2.5, 3.0, 2.0)
)

nll_values <- apply(test_params, 1, function(p) llmc(p, data))
results <- data.frame(
  Gamma = test_params[, 1],
  Delta = test_params[, 2],
  Lambda = test_params[, 3],
  NegLogLik = nll_values
)
print(results, digits = 4)
#>   Gamma Delta Lambda NegLogLik
#> 1   1.5   2.0    1.0     38.79
#> 2   2.0   2.5    1.5   -309.75
#> 3   2.5   3.0    2.0    -40.96


## Example 2: Maximum Likelihood Estimation

# Optimization using BFGS with analytical gradient
fit <- optim(
  par = c(1.5, 2.0, 1.0),
  fn = llmc,
  gr = grmc,
  data = data,
  method = "BFGS",
  hessian = TRUE
)

mle <- fit$par
names(mle) <- c("gamma", "delta", "lambda")
se <- sqrt(diag(solve(fit$hessian)))

results <- data.frame(
  Parameter = c("gamma", "delta", "lambda"),
  True = true_params,
  MLE = mle,
  SE = se,
  CI_Lower = mle - 1.96 * se,
  CI_Upper = mle + 1.96 * se
)
print(results, digits = 4)
#>        Parameter True   MLE     SE CI_Lower CI_Upper
#> gamma      gamma  2.0 1.458 0.7271  0.03309    2.883
#> delta      delta  2.5 2.644 0.3351  1.98760    3.301
#> lambda    lambda  1.5 1.956 0.7785  0.42989    3.482

cat("\nNegative log-likelihood at MLE:", fit$value, "\n")
#> 
#> Negative log-likelihood at MLE: -310.1013 
cat("AIC:", 2 * fit$value + 2 * length(mle), "\n")
#> AIC: -614.2026 
cat("BIC:", 2 * fit$value + length(mle) * log(n), "\n")
#> BIC: -599.4794 


## Example 3: Comparing Optimization Methods

methods <- c("BFGS", "L-BFGS-B", "Nelder-Mead", "CG")
start_params <- c(1.5, 2.0, 1.0)

comparison <- data.frame(
  Method = character(),
  Gamma = numeric(),
  Delta = numeric(),
  Lambda = numeric(),
  NegLogLik = numeric(),
  Convergence = integer(),
  stringsAsFactors = FALSE
)

for (method in methods) {
  if (method %in% c("BFGS", "CG")) {
    fit_temp <- optim(
      par = start_params,
      fn = llmc,
      gr = grmc,
      data = data,
      method = method
    )
  } else if (method == "L-BFGS-B") {
    fit_temp <- optim(
      par = start_params,
      fn = llmc,
      gr = grmc,
      data = data,
      method = method,
      lower = c(0.01, 0.01, 0.01),
      upper = c(100, 100, 100)
    )
  } else {
    fit_temp <- optim(
      par = start_params,
      fn = llmc,
      data = data,
      method = method
    )
  }

  comparison <- rbind(comparison, data.frame(
    Method = method,
    Gamma = fit_temp$par[1],
    Delta = fit_temp$par[2],
    Lambda = fit_temp$par[3],
    NegLogLik = fit_temp$value,
    Convergence = fit_temp$convergence,
    stringsAsFactors = FALSE
  ))
}

print(comparison, digits = 4, row.names = FALSE)
#>       Method Gamma Delta Lambda NegLogLik Convergence
#>         BFGS 1.458 2.644  1.956    -310.1           0
#>     L-BFGS-B 1.460 2.644  1.954    -310.1           0
#>  Nelder-Mead 1.460 2.643  1.954    -310.1           0
#>           CG 1.878 2.522  1.596    -310.0           1


## Example 4: Likelihood Ratio Test

# Test H0: lambda = 1.5 vs H1: lambda free
loglik_full <- -fit$value

restricted_ll <- function(params_restricted, data, lambda_fixed) {
  llmc(par = c(params_restricted[1], params_restricted[2],
               lambda_fixed), data = data)
}

fit_restricted <- optim(
  par = c(mle[1], mle[2]),
  fn = restricted_ll,
  data = data,
  lambda_fixed = 1.5,
  method = "BFGS"
)

loglik_restricted <- -fit_restricted$value
lr_stat <- 2 * (loglik_full - loglik_restricted)
p_value <- pchisq(lr_stat, df = 1, lower.tail = FALSE)

cat("LR Statistic:", round(lr_stat, 4), "\n")
#> LR Statistic: 0.2939 
cat("P-value:", format.pval(p_value, digits = 4), "\n")
#> P-value: 0.5878 


## Example 5: Univariate Profile Likelihoods

# Profile for gamma
gamma_grid <- seq(mle[1] - 1.5, mle[1] + 1.5, length.out = 50)
gamma_grid <- gamma_grid[gamma_grid > 0]
profile_ll_gamma <- numeric(length(gamma_grid))

for (i in seq_along(gamma_grid)) {
  profile_fit <- optim(
    par = mle[-1],
    fn = function(p) llmc(c(gamma_grid[i], p), data),
    method = "BFGS"
  )
  profile_ll_gamma[i] <- -profile_fit$value
}

# Profile for delta
delta_grid <- seq(mle[2] - 1.5, mle[2] + 1.5, length.out = 50)
delta_grid <- delta_grid[delta_grid > 0]
profile_ll_delta <- numeric(length(delta_grid))

for (i in seq_along(delta_grid)) {
  profile_fit <- optim(
    par = mle[-2],
    fn = function(p) llmc(c(p[1], delta_grid[i], p[2]), data),
    method = "BFGS"
  )
  profile_ll_delta[i] <- -profile_fit$value
}

# Profile for lambda
lambda_grid <- seq(mle[3] - 1.5, mle[3] + 1.5, length.out = 50)
lambda_grid <- lambda_grid[lambda_grid > 0]
profile_ll_lambda <- numeric(length(lambda_grid))

for (i in seq_along(lambda_grid)) {
  profile_fit <- optim(
    par = mle[-3],
    fn = function(p) llmc(c(p[1], p[2], lambda_grid[i]), data),
    method = "BFGS"
  )
  profile_ll_lambda[i] <- -profile_fit$value
}

# 95% confidence threshold
chi_crit <- qchisq(0.95, df = 1)
threshold <- max(profile_ll_gamma) - chi_crit / 2

# Plot all profiles

plot(gamma_grid, profile_ll_gamma, type = "l", lwd = 2, col = "#2E4057",
     xlab = expression(gamma), ylab = "Profile Log-Likelihood",
     main = expression(paste("Profile: ", gamma)), las = 1)
abline(v = mle[1], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[1], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright", legend = c("MLE", "True", "95% CI"),
       col = c("#8B0000", "#006400", "#808080"),
       lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8)
grid(col = "gray90")


plot(delta_grid, profile_ll_delta, type = "l", lwd = 2, col = "#2E4057",
     xlab = expression(delta), ylab = "Profile Log-Likelihood",
     main = expression(paste("Profile: ", delta)), las = 1)
abline(v = mle[2], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[2], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright", legend = c("MLE", "True", "95% CI"),
       col = c("#8B0000", "#006400", "#808080"),
       lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8)
grid(col = "gray90")


plot(lambda_grid, profile_ll_lambda, type = "l", lwd = 2, col = "#2E4057",
     xlab = expression(lambda), ylab = "Profile Log-Likelihood",
     main = expression(paste("Profile: ", lambda)), las = 1)
abline(v = mle[3], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[3], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright", legend = c("MLE", "True", "95% CI"),
       col = c("#8B0000", "#006400", "#808080"),
       lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8)
grid(col = "gray90")


## Example 6: 2D Log-Likelihood Surfaces (All pairs side by side)

# Create 2D grids with wider range (±1.5)
gamma_2d <- seq(mle[1] - 1.5, mle[1] + 1.5, length.out = round(n/25))
delta_2d <- seq(mle[2] - 1.5, mle[2] + 1.5, length.out = round(n/25))
lambda_2d <- seq(mle[3] - 1.5, mle[3] + 1.5, length.out = round(n/25))

gamma_2d <- gamma_2d[gamma_2d > 0]
delta_2d <- delta_2d[delta_2d > 0]
lambda_2d <- lambda_2d[lambda_2d > 0]

# Compute all log-likelihood surfaces
ll_surface_gd <- matrix(NA, nrow = length(gamma_2d), ncol = length(delta_2d))
ll_surface_gl <- matrix(NA, nrow = length(gamma_2d), ncol = length(lambda_2d))
ll_surface_dl <- matrix(NA, nrow = length(delta_2d), ncol = length(lambda_2d))

# Gamma vs Delta
for (i in seq_along(gamma_2d)) {
  for (j in seq_along(delta_2d)) {
    ll_surface_gd[i, j] <- -llmc(c(gamma_2d[i], delta_2d[j], mle[3]), data)
  }
}

# Gamma vs Lambda
for (i in seq_along(gamma_2d)) {
  for (j in seq_along(lambda_2d)) {
    ll_surface_gl[i, j] <- -llmc(c(gamma_2d[i], mle[2], lambda_2d[j]), data)
  }
}

# Delta vs Lambda
for (i in seq_along(delta_2d)) {
  for (j in seq_along(lambda_2d)) {
    ll_surface_dl[i, j] <- -llmc(c(mle[1], delta_2d[i], lambda_2d[j]), data)
  }
}

# Confidence region levels
max_ll_gd <- max(ll_surface_gd, na.rm = TRUE)
max_ll_gl <- max(ll_surface_gl, na.rm = TRUE)
max_ll_dl <- max(ll_surface_dl, na.rm = TRUE)

levels_95_gd <- max_ll_gd - qchisq(0.95, df = 2) / 2
levels_95_gl <- max_ll_gl - qchisq(0.95, df = 2) / 2
levels_95_dl <- max_ll_dl - qchisq(0.95, df = 2) / 2

# Plot 

# Gamma vs Delta
contour(gamma_2d, delta_2d, ll_surface_gd,
        xlab = expression(gamma), ylab = expression(delta),
        main = "Gamma vs Delta", las = 1,
        levels = seq(min(ll_surface_gd, na.rm = TRUE), max_ll_gd, length.out = 20),
        col = "#2E4057", lwd = 1)
contour(gamma_2d, delta_2d, ll_surface_gd,
        levels = levels_95_gd, col = "#FF6347", lwd = 2.5, lty = 1, add = TRUE)
points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")


# Gamma vs Lambda
contour(gamma_2d, lambda_2d, ll_surface_gl,
        xlab = expression(gamma), ylab = expression(lambda),
        main = "Gamma vs Lambda", las = 1,
        levels = seq(min(ll_surface_gl, na.rm = TRUE), max_ll_gl, length.out = 20),
        col = "#2E4057", lwd = 1)
contour(gamma_2d, lambda_2d, ll_surface_gl,
        levels = levels_95_gl, col = "#FF6347", lwd = 2.5, lty = 1, add = TRUE)
points(mle[1], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")


# Delta vs Lambda
contour(delta_2d, lambda_2d, ll_surface_dl,
        xlab = expression(delta), ylab = expression(lambda),
        main = "Delta vs Lambda", las = 1,
        levels = seq(min(ll_surface_dl, na.rm = TRUE), max_ll_dl, length.out = 20),
        col = "#2E4057", lwd = 1)
contour(delta_2d, lambda_2d, ll_surface_dl,
        levels = levels_95_dl, col = "#FF6347", lwd = 2.5, lty = 1, add = TRUE)
points(mle[2], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[2], true_params[3], pch = 17, col = "#006400", cex = 1.5)
grid(col = "gray90")

legend("topright",
       legend = c("MLE", "True", "95% CR"),
       col = c("#8B0000", "#006400", "#FF6347"),
       pch = c(19, 17, NA),
       lty = c(NA, NA, 1),
       lwd = c(NA, NA, 2.5),
       bty = "n", cex = 0.8)


# }