Computes the quantile function (inverse CDF) for the McDonald (Mc) distribution
(also known as Beta Power) with parameters gamma (\(\gamma\)),
delta (\(\delta\)), and lambda (\(\lambda\)). It finds the
value q such that \(P(X \le q) = p\). This distribution is a special
case of the Generalized Kumaraswamy (GKw) distribution where \(\alpha = 1\)
and \(\beta = 1\).
Arguments
- p
Vector of probabilities (values between 0 and 1).
- gamma
Shape parameter
gamma> 0. Can be a scalar or a vector. Default: 1.0.- delta
Shape parameter
delta>= 0. Can be a scalar or a vector. Default: 0.0.- lambda
Shape parameter
lambda> 0. Can be a scalar or a vector. Default: 1.0.- lower_tail
Logical; if
TRUE(default), probabilities are \(p = P(X \le q)\), otherwise, probabilities are \(p = P(X > q)\).- log_p
Logical; if
TRUE, probabilitiespare given as \(\log(p)\). Default:FALSE.
Value
A vector of quantiles corresponding to the given probabilities p.
The length of the result is determined by the recycling rule applied to
the arguments (p, gamma, delta, lambda).
Returns:
0forp = 0(orp = -Infiflog_p = TRUE, whenlower_tail = TRUE).1forp = 1(orp = 0iflog_p = TRUE, whenlower_tail = TRUE).NaNforp < 0orp > 1(or corresponding log scale).NaNfor invalid parameters (e.g.,gamma <= 0,delta < 0,lambda <= 0).
Boundary return values are adjusted accordingly for lower_tail = FALSE.
Details
The quantile function \(Q(p)\) is the inverse of the CDF \(F(q)\). The CDF
for the Mc (\(\alpha=1, \beta=1\)) distribution is \(F(q) = I_{q^\lambda}(\gamma, \delta+1)\),
where \(I_z(a,b)\) is the regularized incomplete beta function (see pmc).
To find the quantile \(q\), we first invert the Beta function part: let
\(y = I^{-1}_{p}(\gamma, \delta+1)\), where \(I^{-1}_p(a,b)\) is the
inverse computed via qbeta. We then solve \(q^\lambda = y\)
for \(q\), yielding the quantile function:
$$
Q(p) = \left[ I^{-1}_{p}(\gamma, \delta+1) \right]^{1/\lambda}
$$
The function uses this formula, calculating \(I^{-1}_{p}(\gamma, \delta+1)\)
via qbeta(p, gamma, delta + 1, ...) while respecting the
lower_tail and log_p arguments. This is equivalent to the general
GKw quantile function (qgkw) evaluated with \(\alpha=1, \beta=1\).
References
McDonald, J. B. (1984). Some generalized functions for the size distribution of income. Econometrica, 52(3), 647-663.
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation,
Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79-88.
Examples
# \donttest{
# Example values
p_vals <- c(0.1, 0.5, 0.9)
gamma_par <- 2.0
delta_par <- 1.5
lambda_par <- 1.0 # Equivalent to Beta(gamma, delta+1)
# Calculate quantiles using qmc
quantiles <- qmc(p_vals, gamma_par, delta_par, lambda_par)
print(quantiles)
#> [1] 0.1649288 0.4355544 0.7379563
# Compare with Beta quantiles
print(stats::qbeta(p_vals, shape1 = gamma_par, shape2 = delta_par + 1))
#> [1] 0.1649288 0.4355544 0.7379563
# Calculate quantiles for upper tail probabilities P(X > q) = p
quantiles_upper <- qmc(p_vals, gamma_par, delta_par, lambda_par,
lower_tail = FALSE)
print(quantiles_upper)
#> [1] 0.7379563 0.4355544 0.1649288
# Check: qmc(p, ..., lt=F) == qmc(1-p, ..., lt=T)
print(qmc(1 - p_vals, gamma_par, delta_par, lambda_par))
#> [1] 0.7379563 0.4355544 0.1649288
# Calculate quantiles from log probabilities
log_p_vals <- log(p_vals)
quantiles_logp <- qmc(log_p_vals, gamma_par, delta_par, lambda_par, log_p = TRUE)
print(quantiles_logp)
#> [1] 0.1649288 0.4355544 0.7379563
# Check: should match original quantiles
print(quantiles)
#> [1] 0.1649288 0.4355544 0.7379563
# Compare with qgkw setting alpha = 1, beta = 1
quantiles_gkw <- qgkw(p_vals, alpha = 1.0, beta = 1.0, gamma = gamma_par,
delta = delta_par, lambda = lambda_par)
print(paste("Max difference:", max(abs(quantiles - quantiles_gkw)))) # Should be near zero
#> [1] "Max difference: 5.55111512312578e-17"
# Verify inverse relationship with pmc
p_check <- 0.75
q_calc <- qmc(p_check, gamma_par, delta_par, lambda_par) # Use lambda != 1
p_recalc <- pmc(q_calc, gamma_par, delta_par, lambda_par)
print(paste("Original p:", p_check, " Recalculated p:", p_recalc))
#> [1] "Original p: 0.75 Recalculated p: 0.75"
# abs(p_check - p_recalc) < 1e-9 # Should be TRUE
# Boundary conditions
print(qmc(c(0, 1), gamma_par, delta_par, lambda_par)) # Should be 0, 1
#> [1] 0 1
print(qmc(c(-Inf, 0), gamma_par, delta_par, lambda_par, log_p = TRUE)) # Should be 0, 1
#> [1] 0 1
# }