Skip to contents

Computes the negative log-likelihood function for the Exponentiated Kumaraswamy (EKw) distribution with parameters alpha (\(\alpha\)), beta (\(\beta\)), and lambda (\(\lambda\)), given a vector of observations. This distribution is the special case of the Generalized Kumaraswamy (GKw) distribution where \(\gamma = 1\) and \(\delta = 0\). This function is suitable for maximum likelihood estimation.

Usage

llekw(par, data)

Arguments

par

A numeric vector of length 3 containing the distribution parameters in the order: alpha (\(\alpha > 0\)), beta (\(\beta > 0\)), lambda (\(\lambda > 0\)).

data

A numeric vector of observations. All values must be strictly between 0 and 1 (exclusive).

Value

Returns a single double value representing the negative log-likelihood (\(-\ell(\theta|\mathbf{x})\)). Returns Inf if any parameter values in par are invalid according to their constraints, or if any value in data is not in the interval (0, 1).

Details

The Exponentiated Kumaraswamy (EKw) distribution is the GKw distribution (dekw) with \(\gamma=1\) and \(\delta=0\). Its probability density function (PDF) is: $$ f(x | \theta) = \lambda \alpha \beta x^{\alpha-1} (1 - x^\alpha)^{\beta-1} \bigl[1 - (1 - x^\alpha)^\beta \bigr]^{\lambda - 1} $$ for \(0 < x < 1\) and \(\theta = (\alpha, \beta, \lambda)\). The log-likelihood function \(\ell(\theta | \mathbf{x})\) for a sample \(\mathbf{x} = (x_1, \dots, x_n)\) is \(\sum_{i=1}^n \ln f(x_i | \theta)\): $$ \ell(\theta | \mathbf{x}) = n[\ln(\lambda) + \ln(\alpha) + \ln(\beta)] + \sum_{i=1}^{n} [(\alpha-1)\ln(x_i) + (\beta-1)\ln(v_i) + (\lambda-1)\ln(w_i)] $$ where:

  • \(v_i = 1 - x_i^{\alpha}\)

  • \(w_i = 1 - v_i^{\beta} = 1 - (1-x_i^{\alpha})^{\beta}\)

This function computes and returns the negative log-likelihood, \(-\ell(\theta|\mathbf{x})\), suitable for minimization using optimization routines like optim. Numerical stability is maintained similarly to llgkw.

References

Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2012). The exponentiated Kumaraswamy distribution. Journal of the Franklin Institute, 349(3),

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79-88.

See also

llgkw (parent distribution negative log-likelihood), dekw, pekw, qekw, rekw, grekw (gradient, if available), hsekw (Hessian, if available), optim

Author

Lopes, J. E.

Examples

# \donttest{
## Example 1: Basic Log-Likelihood Evaluation

# Generate sample data
set.seed(123)
n <- 1000
true_params <- c(alpha = 2.5, beta = 3.5, lambda = 2.0)
data <- rekw(n, alpha = true_params[1], beta = true_params[2],
             lambda = true_params[3])

# Evaluate negative log-likelihood at true parameters
nll_true <- llekw(par = true_params, data = data)
cat("Negative log-likelihood at true parameters:", nll_true, "\n")
#> Negative log-likelihood at true parameters: -491.1647 

# Evaluate at different parameter values
test_params <- rbind(
  c(2.0, 3.0, 1.5),
  c(2.5, 3.5, 2.0),
  c(3.0, 4.0, 2.5)
)

nll_values <- apply(test_params, 1, function(p) llekw(p, data))
results <- data.frame(
  Alpha = test_params[, 1],
  Beta = test_params[, 2],
  Lambda = test_params[, 3],
  NegLogLik = nll_values
)
print(results, digits = 4)
#>   Alpha Beta Lambda NegLogLik
#> 1   2.0  3.0    1.5    -371.3
#> 2   2.5  3.5    2.0    -491.2
#> 3   3.0  4.0    2.5    -375.3


## Example 2: Maximum Likelihood Estimation

# Optimization using BFGS with analytical gradient
fit <- optim(
  par = c(2, 3, 1.5),
  fn = llekw,
  gr = grekw,
  data = data,
  method = "BFGS",
  hessian = TRUE
)

mle <- fit$par
names(mle) <- c("alpha", "beta", "lambda")
se <- sqrt(diag(solve(fit$hessian)))

results <- data.frame(
  Parameter = c("alpha", "beta", "lambda"),
  True = true_params,
  MLE = mle,
  SE = se,
  CI_Lower = mle - 1.96 * se,
  CI_Upper = mle + 1.96 * se
)
print(results, digits = 4)
#>        Parameter True   MLE     SE CI_Lower CI_Upper
#> alpha      alpha  2.5 2.663 0.5852   1.5156    3.810
#> beta        beta  3.5 3.653 0.4023   2.8643    4.441
#> lambda    lambda  2.0 1.843 0.5776   0.7107    2.975

cat("\nNegative log-likelihood at MLE:", fit$value, "\n")
#> 
#> Negative log-likelihood at MLE: -491.2984 
cat("AIC:", 2 * fit$value + 2 * length(mle), "\n")
#> AIC: -976.5968 
cat("BIC:", 2 * fit$value + length(mle) * log(n), "\n")
#> BIC: -961.8735 


## Example 3: Comparing Optimization Methods

methods <- c("BFGS", "L-BFGS-B", "Nelder-Mead", "CG")
start_params <- c(2, 3, 1.5)

comparison <- data.frame(
  Method = character(),
  Alpha = numeric(),
  Beta = numeric(),
  Lambda = numeric(),
  NegLogLik = numeric(),
  Convergence = integer(),
  stringsAsFactors = FALSE
)

for (method in methods) {
  if (method %in% c("BFGS", "CG")) {
    fit_temp <- optim(
      par = start_params,
      fn = llekw,
      gr = grekw,
      data = data,
      method = method
    )
  } else if (method == "L-BFGS-B") {
    fit_temp <- optim(
      par = start_params,
      fn = llekw,
      gr = grekw,
      data = data,
      method = method,
      lower = c(0.01, 0.01, 0.01),
      upper = c(100, 100, 100)
    )
  } else {
    fit_temp <- optim(
      par = start_params,
      fn = llekw,
      data = data,
      method = method
    )
  }

  comparison <- rbind(comparison, data.frame(
    Method = method,
    Alpha = fit_temp$par[1],
    Beta = fit_temp$par[2],
    Lambda = fit_temp$par[3],
    NegLogLik = fit_temp$value,
    Convergence = fit_temp$convergence,
    stringsAsFactors = FALSE
  ))
}

print(comparison, digits = 4, row.names = FALSE)
#>       Method Alpha  Beta Lambda NegLogLik Convergence
#>         BFGS 2.663 3.653  1.843    -491.3           0
#>     L-BFGS-B 2.663 3.653  1.843    -491.3           0
#>  Nelder-Mead 2.662 3.652  1.843    -491.3           0
#>           CG 2.505 3.552  2.008    -491.3           1


## Example 4: Likelihood Ratio Test

# Test H0: lambda = 2 vs H1: lambda free
loglik_full <- -fit$value

restricted_ll <- function(params_restricted, data, lambda_fixed) {
  llekw(par = c(params_restricted[1], params_restricted[2],
                lambda_fixed), data = data)
}

fit_restricted <- optim(
  par = c(mle[1], mle[2]),
  fn = restricted_ll,
  data = data,
  lambda_fixed = 2,
  method = "BFGS"
)

loglik_restricted <- -fit_restricted$value
lr_stat <- 2 * (loglik_full - loglik_restricted)
p_value <- pchisq(lr_stat, df = 1, lower.tail = FALSE)

cat("LR Statistic:", round(lr_stat, 4), "\n")
#> LR Statistic: 0.0657 
cat("P-value:", format.pval(p_value, digits = 4), "\n")
#> P-value: 0.7977 


## Example 5: Univariate Profile Likelihoods

# Profile for alpha
alpha_grid <- seq(mle[1] - 1, mle[1] + 1, length.out = 50)
alpha_grid <- alpha_grid[alpha_grid > 0]
profile_ll_alpha <- numeric(length(alpha_grid))

for (i in seq_along(alpha_grid)) {
  profile_fit <- optim(
    par = mle[-1],
    fn = function(p) llekw(c(alpha_grid[i], p), data),
    method = "BFGS"
  )
  profile_ll_alpha[i] <- -profile_fit$value
}

# Profile for beta
beta_grid <- seq(mle[2] - 1, mle[2] + 1, length.out = 50)
beta_grid <- beta_grid[beta_grid > 0]
profile_ll_beta <- numeric(length(beta_grid))

for (i in seq_along(beta_grid)) {
  profile_fit <- optim(
    par = mle[-2],
    fn = function(p) llekw(c(p[1], beta_grid[i], p[2]), data),
    method = "BFGS"
  )
  profile_ll_beta[i] <- -profile_fit$value
}

# Profile for lambda
lambda_grid <- seq(mle[3] - 1, mle[3] + 1, length.out = 50)
lambda_grid <- lambda_grid[lambda_grid > 0]
profile_ll_lambda <- numeric(length(lambda_grid))

for (i in seq_along(lambda_grid)) {
  profile_fit <- optim(
    par = mle[-3],
    fn = function(p) llekw(c(p[1], p[2], lambda_grid[i]), data),
    method = "BFGS"
  )
  profile_ll_lambda[i] <- -profile_fit$value
}

# 95% confidence threshold
chi_crit <- qchisq(0.95, df = 1)
threshold <- max(profile_ll_alpha) - chi_crit / 2

# Plot all profiles

plot(alpha_grid, profile_ll_alpha, type = "l", lwd = 2, col = "#2E4057",
     xlab = expression(alpha), ylab = "Profile Log-Likelihood",
     main = expression(paste("Profile: ", alpha)), las = 1)
abline(v = mle[1], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[1], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright", legend = c("MLE", "True", "95% CI"),
       col = c("#8B0000", "#006400", "#808080"),
       lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8)
grid(col = "gray90")


plot(beta_grid, profile_ll_beta, type = "l", lwd = 2, col = "#2E4057",
     xlab = expression(beta), ylab = "Profile Log-Likelihood",
     main = expression(paste("Profile: ", beta)), las = 1)
abline(v = mle[2], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[2], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright", legend = c("MLE", "True", "95% CI"),
       col = c("#8B0000", "#006400", "#808080"),
       lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8)
grid(col = "gray90")


plot(lambda_grid, profile_ll_lambda, type = "l", lwd = 2, col = "#2E4057",
     xlab = expression(lambda), ylab = "Profile Log-Likelihood",
     main = expression(paste("Profile: ", lambda)), las = 1)
abline(v = mle[3], col = "#8B0000", lty = 2, lwd = 2)
abline(v = true_params[3], col = "#006400", lty = 2, lwd = 2)
abline(h = threshold, col = "#808080", lty = 3, lwd = 1.5)
legend("topright", legend = c("MLE", "True", "95% CI"),
       col = c("#8B0000", "#006400", "#808080"),
       lty = c(2, 2, 3), lwd = 2, bty = "n", cex = 0.8)
grid(col = "gray90")



## Example 6: 2D Log-Likelihood Surface (Alpha vs Beta)

# Create 2D grid
alpha_2d <- seq(mle[1] - 0.8, mle[1] + 0.8, length.out = round(n/25))
beta_2d <- seq(mle[2] - 0.8, mle[2] + 0.8, length.out = round(n/25))
alpha_2d <- alpha_2d[alpha_2d > 0]
beta_2d <- beta_2d[beta_2d > 0]

# Compute log-likelihood surface
ll_surface_ab <- matrix(NA, nrow = length(alpha_2d), ncol = length(beta_2d))

for (i in seq_along(alpha_2d)) {
  for (j in seq_along(beta_2d)) {
    ll_surface_ab[i, j] <- -llekw(c(alpha_2d[i], beta_2d[j], mle[3]), data)
  }
}

# Confidence region levels
max_ll_ab <- max(ll_surface_ab, na.rm = TRUE)
levels_90_ab <- max_ll_ab - qchisq(0.90, df = 2) / 2
levels_95_ab <- max_ll_ab - qchisq(0.95, df = 2) / 2
levels_99_ab <- max_ll_ab - qchisq(0.99, df = 2) / 2

# Plot contour
contour(alpha_2d, beta_2d, ll_surface_ab,
        xlab = expression(alpha), ylab = expression(beta),
        main = "2D Log-Likelihood: Alpha vs Beta",
        levels = seq(min(ll_surface_ab, na.rm = TRUE), max_ll_ab, length.out = 20),
        col = "#2E4057", las = 1, lwd = 1)

contour(alpha_2d, beta_2d, ll_surface_ab,
        levels = c(levels_90_ab, levels_95_ab, levels_99_ab),
        col = c("#FFA07A", "#FF6347", "#8B0000"),
        lwd = c(2, 2.5, 3), lty = c(3, 2, 1),
        add = TRUE, labcex = 0.8)

points(mle[1], mle[2], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[2], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
       legend = c("MLE", "True", "90% CR", "95% CR", "99% CR"),
       col = c("#8B0000", "#006400", "#FFA07A", "#FF6347", "#8B0000"),
       pch = c(19, 17, NA, NA, NA),
       lty = c(NA, NA, 3, 2, 1),
       lwd = c(NA, NA, 2, 2.5, 3),
       bty = "n", cex = 0.8)
grid(col = "gray90")



## Example 7: 2D Log-Likelihood Surface (Alpha vs Lambda)

# Create 2D grid
alpha_2d_2 <- seq(mle[1] - 0.8, mle[1] + 0.8, length.out = round(n/25))
lambda_2d <- seq(mle[3] - 0.8, mle[3] + 0.8, length.out = round(n/25))
alpha_2d_2 <- alpha_2d_2[alpha_2d_2 > 0]
lambda_2d <- lambda_2d[lambda_2d > 0]

# Compute log-likelihood surface
ll_surface_al <- matrix(NA, nrow = length(alpha_2d_2), ncol = length(lambda_2d))

for (i in seq_along(alpha_2d_2)) {
  for (j in seq_along(lambda_2d)) {
    ll_surface_al[i, j] <- -llekw(c(alpha_2d_2[i], mle[2], lambda_2d[j]), data)
  }
}

# Confidence region levels
max_ll_al <- max(ll_surface_al, na.rm = TRUE)
levels_90_al <- max_ll_al - qchisq(0.90, df = 2) / 2
levels_95_al <- max_ll_al - qchisq(0.95, df = 2) / 2
levels_99_al <- max_ll_al - qchisq(0.99, df = 2) / 2

# Plot contour
contour(alpha_2d_2, lambda_2d, ll_surface_al,
        xlab = expression(alpha), ylab = expression(lambda),
        main = "2D Log-Likelihood: Alpha vs Lambda",
        levels = seq(min(ll_surface_al, na.rm = TRUE), max_ll_al, length.out = 20),
        col = "#2E4057", las = 1, lwd = 1)

contour(alpha_2d_2, lambda_2d, ll_surface_al,
        levels = c(levels_90_al, levels_95_al, levels_99_al),
        col = c("#FFA07A", "#FF6347", "#8B0000"),
        lwd = c(2, 2.5, 3), lty = c(3, 2, 1),
        add = TRUE, labcex = 0.8)

points(mle[1], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[1], true_params[3], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
       legend = c("MLE", "True", "90% CR", "95% CR", "99% CR"),
       col = c("#8B0000", "#006400", "#FFA07A", "#FF6347", "#8B0000"),
       pch = c(19, 17, NA, NA, NA),
       lty = c(NA, NA, 3, 2, 1),
       lwd = c(NA, NA, 2, 2.5, 3),
       bty = "n", cex = 0.8)
grid(col = "gray90")



## Example 8: 2D Log-Likelihood Surface (Beta vs Lambda)

# Create 2D grid
beta_2d_2 <- seq(mle[2] - 0.8, mle[2] + 0.8, length.out = round(n/25))
lambda_2d_2 <- seq(mle[3] - 0.8, mle[3] + 0.8, length.out = round(n/25))
beta_2d_2 <- beta_2d_2[beta_2d_2 > 0]
lambda_2d_2 <- lambda_2d_2[lambda_2d_2 > 0]

# Compute log-likelihood surface
ll_surface_bl <- matrix(NA, nrow = length(beta_2d_2), ncol = length(lambda_2d_2))

for (i in seq_along(beta_2d_2)) {
  for (j in seq_along(lambda_2d_2)) {
    ll_surface_bl[i, j] <- -llekw(c(mle[1], beta_2d_2[i], lambda_2d_2[j]), data)
  }
}

# Confidence region levels
max_ll_bl <- max(ll_surface_bl, na.rm = TRUE)
levels_90_bl <- max_ll_bl - qchisq(0.90, df = 2) / 2
levels_95_bl <- max_ll_bl - qchisq(0.95, df = 2) / 2
levels_99_bl <- max_ll_bl - qchisq(0.99, df = 2) / 2

# Plot contour
contour(beta_2d_2, lambda_2d_2, ll_surface_bl,
        xlab = expression(beta), ylab = expression(lambda),
        main = "2D Log-Likelihood: Beta vs Lambda",
        levels = seq(min(ll_surface_bl, na.rm = TRUE), max_ll_bl, length.out = 20),
        col = "#2E4057", las = 1, lwd = 1)

contour(beta_2d_2, lambda_2d_2, ll_surface_bl,
        levels = c(levels_90_bl, levels_95_bl, levels_99_bl),
        col = c("#FFA07A", "#FF6347", "#8B0000"),
        lwd = c(2, 2.5, 3), lty = c(3, 2, 1),
        add = TRUE, labcex = 0.8)

points(mle[2], mle[3], pch = 19, col = "#8B0000", cex = 1.5)
points(true_params[2], true_params[3], pch = 17, col = "#006400", cex = 1.5)

legend("topright",
       legend = c("MLE", "True", "90% CR", "95% CR", "99% CR"),
       col = c("#8B0000", "#006400", "#FFA07A", "#FF6347", "#8B0000"),
       pch = c(19, 17, NA, NA, NA),
       lty = c(NA, NA, 3, 2, 1),
       lwd = c(NA, NA, 2, 2.5, 3),
       bty = "n", cex = 0.8)
grid(col = "gray90")


# }