Computes the cumulative distribution function (CDF), \(P(X \le q)\), for the
Exponentiated Kumaraswamy (EKw) distribution with parameters alpha
(\(\alpha\)), beta (\(\beta\)), and lambda (\(\lambda\)).
This distribution is defined on the interval (0, 1) and is a special case
of the Generalized Kumaraswamy (GKw) distribution where \(\gamma = 1\)
and \(\delta = 0\).
Arguments
- q
Vector of quantiles (values generally between 0 and 1).
- alpha
Shape parameter
alpha> 0. Can be a scalar or a vector. Default: 1.0.- beta
Shape parameter
beta> 0. Can be a scalar or a vector. Default: 1.0.- lambda
Shape parameter
lambda> 0 (exponent parameter). Can be a scalar or a vector. Default: 1.0.- lower_tail
Logical; if
TRUE(default), probabilities are \(P(X \le q)\), otherwise, \(P(X > q)\).- log_p
Logical; if
TRUE, probabilities \(p\) are given as \(\log(p)\). Default:FALSE.
Value
A vector of probabilities, \(F(q)\), or their logarithms/complements
depending on lower_tail and log_p. The length of the result
is determined by the recycling rule applied to the arguments (q,
alpha, beta, lambda). Returns 0 (or -Inf
if log_p = TRUE) for q <= 0 and 1 (or 0 if
log_p = TRUE) for q >= 1. Returns NaN for invalid
parameters.
Details
The Exponentiated Kumaraswamy (EKw) distribution is a special case of the
five-parameter Generalized Kumaraswamy distribution (pgkw)
obtained by setting parameters \(\gamma = 1\) and \(\delta = 0\).
The CDF of the GKw distribution is \(F_{GKw}(q) = I_{y(q)}(\gamma, \delta+1)\),
where \(y(q) = [1-(1-q^{\alpha})^{\beta}]^{\lambda}\) and \(I_x(a,b)\)
is the regularized incomplete beta function (pbeta).
Setting \(\gamma=1\) and \(\delta=0\) gives \(I_{y(q)}(1, 1)\). Since
\(I_x(1, 1) = x\), the CDF simplifies to \(y(q)\):
$$
F(q; \alpha, \beta, \lambda) = \bigl[1 - (1 - q^\alpha)^\beta \bigr]^\lambda
$$
for \(0 < q < 1\).
The implementation uses this closed-form expression for efficiency and handles
lower_tail and log_p arguments appropriately.
References
Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2012). The exponentiated Kumaraswamy distribution. Journal of the Franklin Institute, 349(3),
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation,
Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79-88.
Examples
# \donttest{
# Example values
q_vals <- c(0.2, 0.5, 0.8)
alpha_par <- 2.0
beta_par <- 3.0
lambda_par <- 1.5
# Calculate CDF P(X <= q)
probs <- pekw(q_vals, alpha_par, beta_par, lambda_par)
print(probs)
#> [1] 0.03913276 0.43957464 0.93083875
# Calculate upper tail P(X > q)
probs_upper <- pekw(q_vals, alpha_par, beta_par, lambda_par,
lower_tail = FALSE)
print(probs_upper)
#> [1] 0.96086724 0.56042536 0.06916125
# Check: probs + probs_upper should be 1
print(probs + probs_upper)
#> [1] 1 1 1
# Calculate log CDF
log_probs <- pekw(q_vals, alpha_par, beta_par, lambda_par, log_p = TRUE)
print(log_probs)
#> [1] -3.24079519 -0.82194776 -0.07166921
# Check: should match log(probs)
print(log(probs))
#> [1] -3.24079519 -0.82194776 -0.07166921
# Compare with pgkw setting gamma = 1, delta = 0
probs_gkw <- pgkw(q_vals, alpha_par, beta_par, gamma = 1.0, delta = 0.0,
lambda = lambda_par)
print(paste("Max difference:", max(abs(probs - probs_gkw)))) # Should be near zero
#> [1] "Max difference: 5.55111512312578e-17"
# Plot the CDF for different lambda values
curve_q <- seq(0.01, 0.99, length.out = 200)
curve_p1 <- pekw(curve_q, alpha = 2, beta = 3, lambda = 0.5)
curve_p2 <- pekw(curve_q, alpha = 2, beta = 3, lambda = 1.0) # standard Kw
curve_p3 <- pekw(curve_q, alpha = 2, beta = 3, lambda = 2.0)
plot(curve_q, curve_p2, type = "l", main = "EKw CDF Examples (alpha=2, beta=3)",
xlab = "q", ylab = "F(q)", col = "red", ylim = c(0, 1))
lines(curve_q, curve_p1, col = "blue")
lines(curve_q, curve_p3, col = "green")
legend("bottomright", legend = c("lambda=0.5", "lambda=1.0 (Kw)", "lambda=2.0"),
col = c("blue", "red", "green"), lty = 1, bty = "n")
# }