Package index
-
AIC(<oblr>)
- AIC Method for oblr Objects
-
BIC()
- Register the S3 method
-
BIC(<oblr>)
- BIC Method for oblr Objects
-
OBApplyWoECat()
- Apply Optimal Weight of Evidence (WoE) to a Categorical Feature
-
OBApplyWoENum()
- Apply Optimal Weight of Evidence (WoE) to a Numerical Feature
-
OBCalculateSpecialWoE()
- Calculate Special WoE for Edge Cases
-
OBCreateSpecialBin()
- Create Special Bin Entry
-
OBDataPreprocessor()
- Preprocesses a numeric or categorical variable for optimal binning with handling of missing values and outliers
-
OBGainsTable()
- Generate a Detailed Gains Table from Optimal Binning Results
-
OBGainsTableFeature()
- Generate Gains Table for a Binned Feature
-
OBGetAlgoName()
- Get Available Optimal Binning Algorithms
-
OBMapTargetVariable()
- Map Target Variable to 0/1
-
OBPreprocessData()
- Preprocess Data for Optimal Binning
-
OBSelectAlgorithm()
- Select Optimal Binning Algorithm (Unused in main flow)
-
OBSelectBestModel()
- Select the Best Model for Optimal Binning
-
OBSelectOptimalFeatures()
- Select Optimal Features Based on Weight of Evidence
-
OBValidateInputs()
- Validate Inputs for Optimal Binning
-
OBWoEMonotonic()
- Check if WoE values are monotonic
-
anova(<oblr>)
- Anova Method for oblr Objects
-
binning_categorical_cutpoints()
- Binning Categorical Variables using Custom Cutpoints
-
binning_numerical_cutpoints()
- Binning Numerical Variables using Custom Cutpoints
-
coef(<oblr>)
- Coefficients Method for oblr Objects
-
computeMetrics()
- Compute Performance Metrics for Logistic Regression Models
-
fit_logistic_regression()
- Logistic Regression with Optional Hessian Calculation
-
fitted(<oblr>)
- Fitted Values Method for oblr Objects
-
logLik(<oblr>)
- Log-Likelihood Method for oblr Objects
-
oblr()
- Optimized Logistic Regression
-
obwoe()
- Optimal Binning and Weight of Evidence Calculation
-
optimal_binning_categorical_cm()
- Optimal Binning for Categorical Variables using ChiMerge
-
optimal_binning_categorical_dmiv()
- Optimal Binning for Categorical Variables using Divergence Measures (V2)
-
optimal_binning_categorical_dp()
- Optimal Binning for Categorical Variables using Dynamic Programming
-
optimal_binning_categorical_fetb()
- Categorical Optimal Binning with Fisher’s Exact Test
-
optimal_binning_categorical_gmb()
- Categorical Optimal Binning with Greedy Merge Binning
-
optimal_binning_categorical_ivb()
- Optimal Binning for Categorical Variables using Information Value Dynamic Programming
-
optimal_binning_categorical_jedi()
- Optimal Categorical Binning JEDI (Joint Entropy-Driven Information Maximization)
-
optimal_binning_categorical_jedi_mwoe()
- Optimal Binning for Categorical Variables with Multinomial Target using JEDI-MWoE
-
optimal_binning_categorical_mba()
- Optimal Binning for Categorical Variables using Monotonic Binning Algorithm (MBA)
-
optimal_binning_categorical_milp()
- Optimal Binning for Categorical Variables using MILP
-
optimal_binning_categorical_mob()
- Optimal Binning for Categorical Variables using Monotonic Optimal Binning (MOB)
-
optimal_binning_categorical_sab()
- Optimal Binning for Categorical Variables using Simulated Annealing
-
optimal_binning_categorical_sblp()
- Optimal Binning for Categorical Variables using Similarity-Based Logistic Partitioning (SBLP)
-
optimal_binning_categorical_sketch()
- Optimal Binning for Categorical Variables using Sketch-based Algorithm
-
optimal_binning_categorical_swb()
- Optimal Binning for Categorical Variables using Sliding Window Binning (SWB)
-
optimal_binning_categorical_udt()
- Optimal Binning for Categorical Variables using a User-Defined Technique (UDT)
-
optimal_binning_numerical_bb()
- Optimal Binning for Numerical Variables using Branch and Bound Algorithm
-
optimal_binning_numerical_cm()
- Optimal Binning for Numerical Variables using ChiMerge
-
optimal_binning_numerical_dmiv()
- Optimal Binning for Numerical Variables using Divergence Measures and Information Value
-
optimal_binning_numerical_dp()
- Optimal Binning for Numerical Variables using Dynamic Programming
-
optimal_binning_numerical_ewb()
- Optimal Binning for Numerical Variables using Equal-Width Binning
-
optimal_binning_numerical_fast_mdlpm()
- Optimal Binning for Numerical Variables using MDLP with Monotonicity
-
optimal_binning_numerical_fetb()
- Optimal Binning for Numerical Variables with Fisher’s Exact Test
-
optimal_binning_numerical_ir()
- Optimal Binning for Numerical Variables using Isotonic Regression
-
optimal_binning_numerical_jedi()
- Optimal Numerical Binning JEDI (Joint Entropy-Driven Interval Discretization)
-
optimal_binning_numerical_jedi_mwoe()
- Optimal Numerical Binning JEDI M-WOE (Multinomial Weight of Evidence)
-
optimal_binning_numerical_kmb()
- Optimal Binning for Numerical Variables using K-means Binning (KMB)
-
optimal_binning_numerical_ldb()
- Optimal Binning for Numerical Variables using Local Density Binning (LDB)
-
optimal_binning_numerical_lpdb()
- Optimal Binning for Numerical Variables using Local Polynomial Density Binning (LPDB)
-
optimal_binning_numerical_mblp()
- Optimal Binning for Numerical Features Using Monotonic Binning via Linear Programming (MBLP)
-
optimal_binning_numerical_mdlp()
- Optimal Binning for Numerical Features using the Minimum Description Length Principle (MDLP)
-
optimal_binning_numerical_mob()
- Optimal Binning for Numerical Features using Monotonic Optimal Binning (MOB)
-
optimal_binning_numerical_mrblp()
- Optimal Binning for Numerical Variables using Monotonic Risk Binning with Likelihood Ratio Pre-binning (MRBLP)
-
optimal_binning_numerical_oslp()
- Optimal Binning for Numerical Variables using OSLP
-
optimal_binning_numerical_sketch()
- Optimal Binning for Numerical Variables using Sketch-based Algorithm
-
optimal_binning_numerical_ubsd()
- Optimal Binning for Numerical Variables using Unsupervised Binning with Standard Deviation
-
optimal_binning_numerical_udt()
- Optimal Binning for Numerical Variables using Unsupervised Decision Trees
-
predict(<oblr>)
- Predict Method for oblr Objects
-
print(<oblr>)
- Print Method for oblr Objects
-
print(<summary.oblr>)
- Print Method for summary.oblr Objects
-
residuals(<oblr>)
- Residuals Method for oblr Objects
-
summary(<oblr>)
- Summary Method for oblr Objects
-
update(<oblr>)
- Update Method for oblr Objects
-
vcov(<oblr>)
- Variance-Covariance Matrix Method for oblr Objects