
Package index
-
bake(<step_obwoe>) - Apply the Optimal Binning Transformation
-
control.obwoe() - Control Parameters for Optimal Binning Algorithms
-
.categorical_only_algorithms() - Categorical-Only Algorithms
-
.numerical_only_algorithms() - Numerical-Only Algorithms
-
.universal_algorithms() - Universal Algorithms
-
.valid_algorithms() - Valid Binning Algorithms
-
fit_logistic_regression() - Fit Logistic Regression Model
-
ob_apply_woe_cat() - Apply Optimal Weight of Evidence (WoE) to a Categorical Feature
-
ob_apply_woe_num() - Apply Optimal Weight of Evidence (WoE) to a Numerical Feature
-
ob_categorical_cm() - Optimal Binning for Categorical Variables using Enhanced ChiMerge Algorithm
-
ob_categorical_dmiv() - Optimal Binning for Categorical Variables using Divergence Measures
-
ob_categorical_dp() - Optimal Binning for Categorical Variables using Dynamic Programming
-
ob_categorical_fetb() - Optimal Binning for Categorical Variables using Fisher's Exact Test
-
ob_categorical_gmb() - Optimal Binning for Categorical Variables using Greedy Merge Algorithm
-
ob_categorical_ivb() - Optimal Binning for Categorical Variables using Information Value Dynamic Programming
-
ob_categorical_jedi() - Optimal Binning for Categorical Variables using JEDI Algorithm
-
ob_categorical_jedi_mwoe() - Optimal Binning for Categorical Variables with Multinomial Target using JEDI-MWoE
-
ob_categorical_mba() - Optimal Binning for Categorical Variables using Monotonic Binning Algorithm
-
ob_categorical_milp() - Optimal Binning for Categorical Variables using Heuristic Algorithm
-
ob_categorical_mob() - Optimal Binning for Categorical Variables using Monotonic Optimal Binning (MOB)
-
ob_categorical_sab() - Optimal Binning for Categorical Variables using Simulated Annealing
-
ob_categorical_sblp() - Optimal Binning for Categorical Variables using SBLP
-
ob_categorical_sketch() - Optimal Binning for Categorical Variables using Sketch-based Algorithm
-
ob_categorical_swb() - Optimal Binning for Categorical Variables using Sliding Window Binning (SWB)
-
ob_categorical_udt() - Optimal Binning for Categorical Variables using a User-Defined Technique (UDT)
-
ob_cutpoints_cat() - Binning Categorical Variables using Custom Cutpoints
-
ob_cutpoints_num() - Binning Numerical Variables using Custom Cutpoints
-
ob_gains_table() - Compute Comprehensive Gains Table from Binning Results
-
ob_gains_table_feature() - Compute Gains Table for a Binned Feature Vector
-
ob_numerical_bb() - Optimal Binning for Numerical Variables using Branch and Bound Algorithm
-
ob_numerical_cm() - Optimal Binning for Numerical Variables using Enhanced ChiMerge Algorithm
-
ob_numerical_dmiv() - Optimal Binning using Metric Divergence Measures (Zeng, 2013)
-
ob_numerical_dp() - Optimal Binning for Numerical Variables using Dynamic Programming
-
ob_numerical_ewb() - Hybrid Optimal Binning using Equal-Width Initialization and IV Optimization
-
ob_numerical_fast_mdlp() - Optimal Binning using MDLP with Monotonicity Constraints
-
ob_numerical_fetb() - Optimal Binning using Fisher's Exact Test
-
ob_numerical_ir() - Optimal Binning using Isotonic Regression (PAVA)
-
ob_numerical_jedi() - Optimal Binning using Joint Entropy-Driven Interval Discretization (JEDI)
-
ob_numerical_jedi_mwoe() - Optimal Binning for Multiclass Targets using JEDI M-WOE
-
ob_numerical_kmb() - Optimal Binning using K-means Inspired Initialization (KMB)
-
ob_numerical_ldb() - Optimal Binning for Numerical Variables using Local Density Binning
-
ob_numerical_lpdb() - Optimal Binning using Local Polynomial Density Binning (LPDB)
-
ob_numerical_mblp() - Optimal Binning for Numerical Features Using Monotonic Binning via Linear Programming
-
ob_numerical_mdlp() - Optimal Binning for Numerical Features using Minimum Description Length Principle
-
ob_numerical_mob() - Optimal Binning for Numerical Features using Monotonic Optimal Binning
-
ob_numerical_mrblp() - Optimal Binning for Numerical Features using Monotonic Risk Binning with Likelihood Ratio Pre-binning
-
ob_numerical_oslp() - Optimal Binning for Numerical Variables using Optimal Supervised Learning Partitioning
-
ob_numerical_sketch() - Optimal Binning for Numerical Variables using Sketch-based Algorithm
-
ob_numerical_ubsd() - Optimal Binning for Numerical Variables using Unsupervised Binning with Standard Deviation
-
ob_numerical_udt() - Optimal Binning for Numerical Variables using Entropy-Based Partitioning
-
ob_preprocess() - Data Preprocessor for Optimal Binning
-
obcorr() - Compute Multiple Robust Correlations Between Numeric Variables
-
obwoe() - Unified Optimal Binning and Weight of Evidence Transformation
-
obwoe_algorithm() - Binning Algorithm Parameter
-
obwoe_algorithms() - List Available Algorithms
-
obwoe_apply() - Apply Weight of Evidence Transformations to New Data
-
obwoe_bin_cutoff() - Bin Cutoff Parameter
-
obwoe_gains() - Gains Table Statistics for Credit Risk Scorecard Evaluation
-
obwoe_max_bins() - Maximum Bins Parameter
-
obwoe_min_bins() - Minimum Bins Parameter
-
plot(<obwoe>) - Plot Method for obwoe Objects
-
plot(<obwoe_gains>) - Plot Gains Table
-
prep(<step_obwoe>) - Prepare the Optimal Binning Step
-
print(<obwoe>) - Print Method for obwoe Objects
-
print(<step_obwoe>) - Print Method for step_obwoe
-
required_pkgs(<step_obwoe>) - Required Packages for step_obwoe
-
step_obwoe() - Optimal Binning and WoE Transformation Step
-
summary(<obwoe>) - Summary Method for obwoe Objects
-
tidy(<step_obwoe>) - Tidy Method for step_obwoe
-
tunable(<step_obwoe>) - Tunable Parameters for step_obwoe