A qualitative tuning parameter for selecting the optimal binning algorithm
in step_obwoe.
Details
The algorithms are organized into three groups:
Universal (support both numerical and categorical features):
"auto", "jedi", "jedi_mwoe", "cm", "dp",
"dmiv", "fetb", "mob", "sketch", "udt"
Numerical only:
"bb", "ewb", "fast_mdlp", "ir", "kmb",
"ldb", "lpdb", "mblp", "mdlp", "mrblp",
"oslp", "ubsd"
Categorical only:
"gmb", "ivb", "mba", "milp", "sab",
"sblp", "swb"
When tuning with mixed feature types, consider restricting values
to universal algorithms only.
Examples
# Default: all algorithms
obwoe_algorithm()
#> Binning Algorithm (qualitative)
#> 29 possible values include:
#> 'auto', 'jedi', 'jedi_mwoe', 'cm', 'dp', 'dmiv', 'fetb', 'mob', 'sketch',
#> 'udt', 'gmb', 'ivb', 'mba', 'milp', 'sab', 'sblp', 'swb', 'bb', …, 'oslp', and
#> 'ubsd'
# Restrict to universal algorithms for mixed data
obwoe_algorithm(values = c("jedi", "mob", "dp", "cm"))
#> Binning Algorithm (qualitative)
#> 4 possible values include:
#> 'jedi', 'mob', 'dp', and 'cm'
# Numerical-only algorithms
obwoe_algorithm(values = c("mdlp", "fast_mdlp", "ewb", "ir"))
#> Binning Algorithm (qualitative)
#> 4 possible values include:
#> 'mdlp', 'fast_mdlp', 'ewb', and 'ir'
