Overview
The gkwreg package provides a comprehensive and computationally efficient framework for regression modeling of data restricted to the standard unit interval (0, 1), including proportions, rates, fractions, percentages, and bounded indices. While Beta regression is the traditional approach for such data, gkwreg focuses on the Generalized Kumaraswamy (GKw) distribution family, offering exceptional flexibility by encompassing seven important bounded distributions—including Beta and Kumaraswamy—as special or limiting cases.
The package enables full distributional regression, where all relevant parameters can be modeled as functions of covariates through flexible link functions. Maximum Likelihood estimation is performed efficiently via the Template Model Builder (TMB) framework, leveraging Automatic Differentiation (AD) for superior computational speed, numerical accuracy, and optimization stability.
Key Features
Flexible Distribution Hierarchy
Model bounded data using the 5-parameter Generalized Kumaraswamy (GKw) distribution and its seven nested subfamilies:
| Distribution | Code | Parameters Modeled | Fixed Parameters | # Params |
|---|---|---|---|---|
| Generalized Kumaraswamy | gkw |
α, β, γ, δ, λ | None | 5 |
| Beta-Kumaraswamy | bkw |
α, β, γ, δ | λ = 1 | 4 |
| Kumaraswamy-Kumaraswamy | kkw |
α, β, δ, λ | γ = 1 | 4 |
| Exponentiated Kumaraswamy | ekw |
α, β, λ | γ = 1, δ = 0 | 3 |
| McDonald (Beta Power) | mc |
γ, δ, λ | α = 1, β = 1 | 3 |
| Kumaraswamy | kw |
α, β | γ = 1, δ = 0, λ = 1 | 2 |
| Beta | beta |
γ, δ | α = 1, β = 1, λ = 1 | 2 |
Each family offers distinct flexibility-parsimony tradeoffs. Start simple (kw or beta) and compare nested models using likelihood ratio tests or information criteria.
Advanced Regression Modeling
-
Extended formula syntax for parameter-specific linear predictors:
y ~ alpha_predictors | beta_predictors | gamma_predictors | delta_predictors | lambda_predictorsExample:
yield ~ batch + temp | temp | 1 | temp | batch -
Multiple link functions with optional scaling:
-
Positive parameters (α, β, γ, λ):
log(default),sqrt,inverse,identity -
Probability parameters (δ ∈ (0,1)):
logit(default),probit,cloglog,cauchy -
Link scaling: Control transformation intensity via
link_scale(useful for numerical stability)
-
Positive parameters (α, β, γ, λ):
-
Flexible control via
gkw_control():- Multiple optimizers:
nlminb(default),BFGS,Nelder-Mead,CG,SANN,L-BFGS-B - Custom starting values, convergence tolerances, iteration limits
- Fast fitting mode (disable Hessian computation for point estimates only)
- Debugging tools (verbose output, trace levels)
- Multiple optimizers:
Computational Efficiency
-
TMB-powered estimation: Compiled C++ templates with automatic differentiation
- Exact gradients and Hessians (machine precision)
- 10-100× faster than numerical differentiation
- Superior convergence stability
-
Performance optimizations:
- Intelligent caching of intermediate calculations
- Vectorized operations via Eigen/Armadillo
- Memory-efficient for large datasets (n > 100,000)
Comprehensive Inference Tools
Standard R Methods (familiar workflow): - summary(), print(), coef(), vcov(), confint() - logLik(), AIC(), BIC(), nobs() - fitted(), residuals(), predict() - anova() for nested model comparisons
Advanced Prediction (predict.gkwreg): - Multiple prediction types: - "response": Expected mean E(Y|X) - "parameter": All parameter values (α, β, γ, δ, λ) - "link": Linear predictors (before inverse link) - "variance": Predicted variance Var(Y|X) - "density", "probability", "quantile": Distribution functions at specified values - Element-wise or vectorized evaluation - Predictions under alternative distributional assumptions
Model Comparison: - Likelihood ratio tests: anova(), lrtest() - Information criteria: AIC(), BIC() with multi-model comparison - Automated nesting detection and proper test statistics
Sophisticated Diagnostics
6 Diagnostic Plot Types (plot.gkwreg): 1. Residuals vs Observation Indices: Detect autocorrelation, temporal patterns 2. Cook’s Distance: Identify influential observations (threshold: 4/n) 3. Leverage vs Fitted Values: Flag high-leverage points (threshold: 2p/n) 4. Residuals vs Linear Predictor: Check linearity, heteroscedasticity 5. Half-Normal Plot with Simulated Envelope: Assess distributional adequacy 6. Predicted vs Observed: Overall goodness-of-fit
Advanced Features: - Dual graphics systems: Base R (fast) or ggplot2 (publication-quality) - Multiple residual types: Quantile (default), Pearson, Deviance - Customizable: Named-list interface for titles, themes, arrangement - Performance: Automatic sampling for large datasets, adjustable envelope simulations - Programmatic access: save_diagnostics = TRUE returns computed measures
Ecosystem Integration
-
Distribution functions via companion package
gkwdist:- Density (
dgkw,dkw,dbeta, etc.) - CDF (
pgkw,pkw,pbeta, etc.) - Quantile (
qgkw,qkw,qbeta, etc.) - Random generation (
rgkw,rkw,rbeta, etc.) - All implemented in optimized C++ for speed
- Density (
-
Seamless compatibility with R ecosystem:
-
broom:tidy(),glance(),augment()methods (if available) -
tidyverse: Works naturally withdplyr,ggplot2pipelines - Standard workflows: Model selection, cross-validation, bootstrapping
-
Installation
# Install from CRAN (stable release):
install.packages("gkwreg")
# Install companion distribution package:
install.packages("gkwdist")
# Or install development versions from GitHub:
# install.packages("devtools")
devtools::install_github("evandeilton/gkwdist")
devtools::install_github("evandeilton/gkwreg")Quick Start
Basic Regression
library(gkwreg)
library(gkwdist)
# Simulate data
set.seed(123)
n <- 500
x1 <- runif(n, -2, 2)
x2 <- rnorm(n)
# True parameters (log link)
alpha_true <- exp(0.8 + 0.3 * x1)
beta_true <- exp(1.2 - 0.2 * x2)
# Generate response from Kumaraswamy distribution
y <- rkw(n, alpha = alpha_true, beta = beta_true)
y <- pmax(pmin(y, 1 - 1e-7), 1e-7) # Ensure strict bounds
df <- data.frame(y = y, x1 = x1, x2 = x2)
# Fit Kumaraswamy regression
# Formula: alpha ~ x1, beta ~ x2 (intercept-only models also supported)
fit_kw <- gkwreg(y ~ x1 | x2, data = df, family = "kw")
# View results
summary(fit_kw)Advanced Prediction
# Create prediction grid
newdata <- data.frame(
x1 = seq(-2, 2, length.out = 100),
x2 = 0
)
# Predict different quantities
pred_mean <- predict(fit_kw, newdata, type = "response") # E(Y|X)
pred_var <- predict(fit_kw, newdata, type = "variance") # Var(Y|X)
pred_alpha <- predict(fit_kw, newdata, type = "alpha") # α parameter
pred_params <- predict(fit_kw, newdata, type = "parameter") # All parameters
# Evaluate density at y = 0.5 for each observation
dens_values <- predict(fit_kw, newdata, type = "density", at = 0.5)
# Compute quantiles (10th, 50th, 90th percentiles)
quantiles <- predict(fit_kw, newdata,
type = "quantile",
at = c(0.1, 0.5, 0.9), elementwise = FALSE
)Model Comparison
# Fit nested models
fit0 <- gkwreg(y ~ 1, data = df, family = "kw") # Null model
fit1 <- gkwreg(y ~ x1, data = df, family = "kw") # + x1
fit2 <- gkwreg(y ~ x1 | x2, data = df, family = "kw") # + x2 on beta
# Information criteria comparison
AIC(fit0, fit1, fit2)
# Likelihood ratio tests
anova(fit0, fit1, fit2, test = "Chisq")Diagnostic Plots
# All diagnostic plots (base R graphics)
par(mfrow = c(3, 2))
plot(fit_kw, ask = FALSE)
# Select specific plots with customization
plot(fit_kw,
which = c(2, 5, 6), # Cook's distance, Half-normal, Pred vs Obs
type = "quantile", # Quantile residuals (recommended)
caption = list(
"2" = "Influential Points",
"5" = "Distributional Check"
),
nsim = 200, # More accurate envelope
level = 0.95
) # 95% confidence
# Modern ggplot2 version with grid arrangement
plot(fit_kw,
use_ggplot = TRUE,
arrange_plots = TRUE,
theme_fn = ggplot2::theme_bw
)
# Extract diagnostic data for custom analysis
diag <- plot(fit_kw, save_diagnostics = TRUE)
head(diag$data) # Access Cook's distance, leverage, residuals, etc.Real Data Example
# Food Expenditure Data (proportion spent on food)
data("FoodExpenditure")
food <- FoodExpenditure
food$prop <- food$food / food$income
# Fit different distributional families
fit_beta <- gkwreg(prop ~ income + persons, data = food, family = "beta")
fit_kw <- gkwreg(prop ~ income + persons, data = food, family = "kw")
fit_ekw <- gkwreg(prop ~ income + persons, data = food, family = "ekw")
# Compare families
comparison <- data.frame(
Family = c("Beta", "Kumaraswamy", "Exp. Kumaraswamy"),
LogLik = c(logLik(fit_beta), logLik(fit_kw), logLik(fit_ekw)),
AIC = c(AIC(fit_beta), AIC(fit_kw), AIC(fit_ekw)),
BIC = c(BIC(fit_beta), BIC(fit_kw), BIC(fit_ekw))
)
print(comparison)
# Visualize best fit
best_fit <- fit_kw
plot(food$income, food$prop,
xlab = "Income", ylab = "Food Proportion",
main = "Food Expenditure Pattern", pch = 16, col = "gray40"
)
income_seq <- seq(min(food$income), max(food$income), length = 100)
pred_df <- data.frame(income = income_seq, persons = median(food$persons))
lines(income_seq, predict(best_fit, pred_df), col = "red", lwd = 2)Advanced Features
Custom Optimization Control
library(gkwreg)
library(gkwdist)
# Simulate data
set.seed(123)
n <- 500
x <- runif(n, 1, 5)
x1 <- runif(n, -2, 2)
x2 <- rnorm(n)
x3 <- rnorm(n, 1, 4)
# True parameters (log link)
alpha_true <- exp(0.8 + 0.3 * x1)
beta_true <- exp(1.2 - 0.2 * x2)
# Generate response from Kumaraswamy distribution
y <- rkw(n, alpha = alpha_true, beta = beta_true)
y <- pmax(pmin(y, 1 - 1e-7), 1e-7) # Ensure strict bounds
df <- data.frame(y = y, x = x, x1 = x1, x2 = x2, x3 = x3)
# Default control (used automatically)
fit <- gkwreg(y ~ x1, data = df, family = "kw")
# Increase iterations for difficult problems
fit_robust <- gkwreg(y ~ x1,
data = df, family = "kw",
control = gkw_control(maxit = 1000, trace = 1)
)
# Try alternative optimizer
fit_bfgs <- gkwreg(y ~ x1,
data = df, family = "kw",
control = gkw_control(method = "BFGS")
)
# Fast fitting without standard errors (exploratory analysis)
fit_fast <- gkwreg(y ~ x1,
data = df, family = "kw",
control = gkw_control(hessian = FALSE)
)
# Custom starting values
fit_custom <- gkwreg(y ~ x1 + x2 | x3,
data = df, family = "kw",
control = gkw_control(
start = list(
alpha = c(0.5, 0.2, -0.1), # Intercept + 2 slopes
beta = c(1.0, 0.3) # Intercept + 1 slope
)
)
)Link Functions and Scaling
# Default: log link for all parameters
fit_default <- gkwreg(y ~ x | x, data = df, family = "kw")
# Custom link functions per parameter
fit_links <- gkwreg(y ~ x | x,
data = df, family = "kw",
link = list(alpha = "sqrt", beta = "log")
)
# Link scaling (control transformation intensity)
# Larger scale = gentler transformation, smaller = steeper
fit_scaled <- gkwreg(y ~ x | x,
data = df, family = "kw",
link_scale = list(alpha = 5, beta = 15)
)Working with Large Datasets
# Large dataset example
set.seed(456)
n_large <- 100000
x_large <- rnorm(n_large)
y_large <- rkw(n_large, alpha = exp(0.5 + 0.2 * x_large), beta = exp(1.0))
df_large <- data.frame(y = y_large, x = x_large)
# Fast fitting
fit_large <- gkwreg(y ~ x,
data = df_large, family = "kw",
control = gkw_control(hessian = FALSE)
)
# Diagnostic plots with sampling (much faster)
plot(fit_large,
which = c(1, 2, 4, 6), # Skip computationally intensive plot 5
sample_size = 5000
) # Use random sample of 5000 obsMathematical Background
The Generalized Kumaraswamy Distribution
The GKw distribution is a five-parameter family for variables on (0, 1) with cumulative distribution function:
where is the regularized incomplete beta function. The probability density function is:
Parameter Roles: - α, β: Control basic shape (inherited from Kumaraswamy) - γ, δ: Govern tail behavior and concentration - λ: Additional flexibility for skewness and peaks
This parameterization captures diverse shapes: symmetric, skewed, unimodal, bimodal, J-shaped, U-shaped, bathtub-shaped.
Computational Engine: TMB
Template Model Builder (TMB) translates statistical models into optimized C++ code with automatic differentiation:
Advantages:
- Speed: 10-100× faster than numerical differentiation
- Accuracy: Machine-precision derivatives (< 1e-15 relative error)
- Stability: Exact Hessian improves convergence reliability
- Scalability: Efficient for large n and many parameters
Under the Hood:
R Formula → TMB C++ Template → Automatic Differentiation →
Compiled Object → Fast Optimization (nlminb/optim) →
Standard Errors (Hessian inversion)Comparison with Other Packages
| Feature | gkwreg | betareg | gamlss | brms |
|---|---|---|---|---|
| Distribution Family | GKw hierarchy (7) | Beta | 100+ | 50+ |
| Estimation | MLE (TMB/AD) | MLE | GAMLSS | Bayesian MCMC |
| Parameter Modeling | All parameters | Mean, precision | All parameters | All parameters |
| Speed (n=10k) | Fast (~1s) | Fast (~1s) | Moderate (~5s) | Slow (~5min) |
| Link Functions | 9 options + scaling | Fixed | Many | Many |
| Optimization Control |
gkw_control() (detailed) |
Basic | Moderate | Extensive |
| Diagnostic Plots | 6 types, dual graphics | 4 types | Extensive | Via bayesplot |
| Prediction Flexibility | 9 types, elementwise | 3 types | Good | Excellent |
| Model Comparison | LRT, AIC, BIC | LRT | GAIC | LOO, WAIC |
| Random Effects | No | No | Yes | Yes |
| Learning Curve | Moderate | Easy | Steep | Steep |
| Dependencies | gkwdist, TMB, Formula | Minimal | Many | Stan, many |
When to use gkwreg:
- Need flexible bounded distributions beyond Beta
- Large datasets requiring fast computation
- All parameters depend on covariates
- Frequentist inference preferred
- Standard R workflow integration
When to consider alternatives:
- Random/mixed effects needed → gamlss, brms
- Bayesian inference required → brms
- Beta distribution sufficient → betareg (simpler)
Documentation and Support
-
Reference Manual:
help(package = "gkwreg") -
Vignettes:
browseVignettes("gkwreg") -
Function Help:
?gkwreg,?predict.gkwreg,?plot.gkwreg,?gkw_control - GitHub Issues: Report bugs or request features
-
Examples: See
examples/directory in package source
References
Primary References:
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation, 81(7), 883-898. DOI: 10.1080/00949650903530745
Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79-88. DOI: 10.1016/0022-1694(80)90036-0
TMB Framework:
- Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., & Bell, B. M. (2016). TMB: Automatic Differentiation and Laplace Approximation. Journal of Statistical Software, 70(5), 1-21. DOI: 10.18637/jss.v070.i05
Related Distributions:
Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages. Statistical Methodology, 6(1), 70-81. DOI: 10.1016/j.stamet.2008.04.001
Carrasco, J. M. F., Ferrari, S. L. P., & Cordeiro, G. M. (2010). A new generalized Kumaraswamy distribution. arXiv preprint arXiv:1004.0911.
Beta Regression:
Ferrari, S. L. P., & Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions. Journal of Applied Statistics, 31(7), 799-815. DOI: 10.1080/0266476042000214501
Cribari-Neto, F., & Zeileis, A. (2010). Beta Regression in R. Journal of Statistical Software, 34(2), 1-24. DOI: 10.18637/jss.v034.i02
Contributing
Contributions are welcome! Ways to contribute:
- Report bugs: GitHub Issues
- Suggest features: Open a feature request issue
- Improve documentation: Submit pull requests for typos, clarifications
- Add examples: Share use cases from your research
- Extend functionality: Propose new methods or families
Author and Maintainer
Lopes, J. E.
evandeilton@gmail.com
LEG - Laboratório de Estatística e Geoinformação
UFPR - Universidade Federal do Paraná, Brazil
GitHub | ORCID
