Confidence Intervals for Generalized Kumaraswamy Regression Parameters
Source:R/gkwreg-methods.R
confint.gkwreg.RdComputes confidence intervals for model parameters in fitted gkwreg objects using Wald (normal approximation) method based on asymptotic theory.
Usage
# S3 method for class 'gkwreg'
confint(object, parm, level = 0.95, ...)Arguments
- object
An object of class
"gkwreg"fromgkwreg.- parm
A specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.
- level
The confidence level required. Default is 0.95.
- ...
Additional arguments (currently unused).
Value
A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labeled as (1-level)/2 and 1 - (1-level)/2 in percent (by default 2.5 percent and 97.5 percent).
Details
The confidence intervals are computed using the Wald method based on asymptotic normality of maximum likelihood estimators: $$CI = \hat{\theta} \pm z_{\alpha/2} \times SE(\hat{\theta})$$ where \(z_{\alpha/2}\) is the appropriate normal quantile and \(SE(\hat{\theta})\) is the standard error from the Hessian matrix.
The model must have been fitted with hessian = TRUE (the default)
in gkw_control. If standard errors are not available, an
error is raised.
Examples
# \donttest{
data(GasolineYield)
fit <- gkwreg(yield ~ batch + temp, data = GasolineYield, family = "kw")
#> Warning: NaNs produced
# 95 percent confidence intervals
confint(fit)
#> Warning: some standard errors are NA or infinite; intervals may be unreliable
#> 2.5 % 97.5 %
#> alpha:(Intercept) 0.61309049 0.7255762
#> alpha:batch1 0.78581980 0.8904463
#> alpha:batch2 0.53531608 0.6472063
#> alpha:batch3 0.65446611 0.7660917
#> alpha:batch4 0.41447097 0.5190488
#> alpha:batch5 0.46459924 0.5759595
#> alpha:batch6 0.39388604 0.5056496
#> alpha:batch7 0.17258723 0.2769559
#> alpha:batch8 0.14773407 0.2586001
#> alpha:batch9 0.07935147 0.2043948
#> alpha:temp NaN NaN
#> beta:(Intercept) 28.03819235 29.7240822
# 90 percent confidence intervals
confint(fit, level = 0.90)
#> Warning: some standard errors are NA or infinite; intervals may be unreliable
#> 5 % 95 %
#> alpha:(Intercept) 0.6221328 0.7165338
#> alpha:batch1 0.7942304 0.8820357
#> alpha:batch2 0.5443106 0.6382118
#> alpha:batch3 0.6634393 0.7571185
#> alpha:batch4 0.4228776 0.5106421
#> alpha:batch5 0.4735511 0.5670076
#> alpha:batch6 0.4028704 0.4966653
#> alpha:batch7 0.1809771 0.2685661
#> alpha:batch8 0.1566462 0.2496880
#> alpha:batch9 0.0894033 0.1943430
#> alpha:temp NaN NaN
#> beta:(Intercept) 28.1737156 29.5885589
# Specific parameters
confint(fit, parm = "alpha:(Intercept)")
#> Warning: some standard errors are NA or infinite; intervals may be unreliable
#> 2.5 % 97.5 %
#> alpha:(Intercept) 0.6130905 0.7255762
confint(fit, parm = 1:3)
#> Warning: some standard errors are NA or infinite; intervals may be unreliable
#> 2.5 % 97.5 %
#> alpha:(Intercept) 0.6130905 0.7255762
#> alpha:batch1 0.7858198 0.8904463
#> alpha:batch2 0.5353161 0.6472063
# }