Overview
The gkwreg package provides a comprehensive and computationally efficient framework for regression modeling of data restricted to the standard unit interval , including proportions, rates, fractions, percentages, and bounded indices.
While Beta regression is the traditional approach for such data, gkwreg focuses on the Generalized Kumaraswamy (GKw) distribution family. This offers exceptional flexibility by encompassing seven important bounded distributions—including Beta and Kumaraswamy—as special or limiting cases.
The package enables full distributional regression, where all relevant parameters can be modeled as functions of covariates through flexible link functions. Maximum Likelihood estimation is performed efficiently via the Template Model Builder (TMB) framework, leveraging Automatic Differentiation (AD) for superior computational speed, numerical accuracy, and optimization stability.
Table of Contents
- Key Features
- Installation
- Quick Start
- Real Data Example
- Advanced Features
- Mathematical Background
- Comparison with Other Packages
- Citation
Key Features
Flexible Distribution Hierarchy
Model bounded data using the 5-parameter Generalized Kumaraswamy (GKw) distribution and its seven nested subfamilies:
| Distribution | Code | Parameters Modeled | Fixed Parameters | # Params |
|---|---|---|---|---|
| Generalized Kumaraswamy | gkw |
None | 5 | |
| Beta-Kumaraswamy | bkw |
4 | ||
| Kumaraswamy-Kumaraswamy | kkw |
4 | ||
| Exponentiated Kumaraswamy | ekw |
3 | ||
| McDonald (Beta Power) | mc |
3 | ||
| Kumaraswamy | kw |
2 | ||
| Beta | beta |
2 |
Each family offers distinct flexibility-parsimony tradeoffs. Start simple (kw or beta) and compare nested models using likelihood ratio tests or information criteria.
Advanced Regression Modeling
-
Extended formula syntax for parameter-specific linear predictors:
y ~ alpha_predictors | beta_predictors | gamma_predictors | delta_predictors | lambda_predictorsExample:
yield ~ batch + temp | temp | 1 | temp | batch -
Multiple link functions with optional scaling:
-
Positive parameters ():
log(default),sqrt,inverse,identity -
Probability parameters ():
logit(default),probit,cloglog,cauchy -
Link scaling: Control transformation intensity via
link_scale(useful for numerical stability)
-
Positive parameters ():
-
Flexible control via
gkw_control():- Multiple optimizers:
nlminb(default),BFGS,Nelder-Mead,CG,SANN,L-BFGS-B - Custom starting values, convergence tolerances, iteration limits
- Fast fitting mode (disable Hessian computation for point estimates only)
- Multiple optimizers:
Computational Efficiency
-
TMB-powered estimation: Compiled C++ templates with automatic differentiation.
- Exact gradients and Hessians (machine precision).
- 10-100× faster than numerical differentiation.
- Superior convergence stability.
-
Performance optimizations:
- Intelligent caching of intermediate calculations.
- Vectorized operations via Eigen/Armadillo.
- Memory-efficient for large datasets ().
Comprehensive Inference Tools
Standard R Methods (familiar workflow):
-
summary(),print(),coef(),vcov(),confint() -
logLik(),AIC(),BIC(),nobs() -
fitted(),residuals(),predict() -
anova()for nested model comparisons
Advanced Prediction (predict.gkwreg):
- Multiple prediction types:
"response","parameter","link","variance","density","probability","quantile". - Predictions under alternative distributional assumptions.
Sophisticated Diagnostics
6 Diagnostic Plot Types (plot.gkwreg):
- Residuals vs Indices: Detect autocorrelation.
- Cook’s Distance: Identify influential observations.
- Leverage vs Fitted: Flag high-leverage points.
- Residuals vs Linear Predictor: Check linearity/heteroscedasticity.
- Half-Normal Plot with Envelope: Assess distributional adequacy.
- Predicted vs Observed: Overall goodness-of-fit.
Installation
You can install the stable version from CRAN (once accepted) or the development version from GitHub.
# Install from CRAN (stable release):
install.packages("gkwreg")
# Install companion distribution package:
install.packages("gkwdist")
# Or install development versions from GitHub:
# install.packages("remotes")
remotes::install_github("evandeilton/gkwdist")
remotes::install_github("evandeilton/gkwreg")Quick Start
Basic Regression
library(gkwreg)
library(gkwdist)
# Simulate data
set.seed(123)
n <- 500
x1 <- runif(n, -2, 2)
x2 <- rnorm(n)
# True parameters (log link)
alpha_true <- exp(0.8 + 0.3 * x1)
beta_true <- exp(1.2 - 0.2 * x2)
# Generate response from Kumaraswamy distribution
y <- rkw(n, alpha = alpha_true, beta = beta_true)
y <- pmax(pmin(y, 1 - 1e-7), 1e-7) # Ensure strict bounds
df <- data.frame(y = y, x1 = x1, x2 = x2)
# Fit Kumaraswamy regression
# Formula: alpha ~ x1, beta ~ x2 (intercept-only models also supported)
fit_kw <- gkwreg(y ~ x1 | x2, data = df, family = "kw")
# View results
summary(fit_kw)Advanced Prediction
# Create prediction grid
newdata <- data.frame(
x1 = seq(-2, 2, length.out = 100),
x2 = 0
)
# Predict different quantities
pred_mean <- predict(fit_kw, newdata, type = "response") # E(Y|X)
pred_var <- predict(fit_kw, newdata, type = "variance") # Var(Y|X)
pred_alpha <- predict(fit_kw, newdata, type = "alpha") # α parameter
pred_params <- predict(fit_kw, newdata, type = "parameter") # All parameters
# Evaluate density at y = 0.5 for each observation
dens_values <- predict(fit_kw, newdata, type = "density", at = 0.5)
# Compute quantiles (10th, 50th, 90th percentiles)
quantiles <- predict(fit_kw, newdata,
type = "quantile",
at = c(0.1, 0.5, 0.9), elementwise = FALSE
)Model Comparison
# Fit nested models
fit0 <- gkwreg(y ~ 1, data = df, family = "kw") # Null model
fit1 <- gkwreg(y ~ x1, data = df, family = "kw") # + x1
fit2 <- gkwreg(y ~ x1 | x2, data = df, family = "kw") # + x2 on beta
# Information criteria comparison
AIC(fit0, fit1, fit2)
# Likelihood ratio tests
anova(fit0, fit1, fit2, test = "Chisq")Diagnostic Plots
# All diagnostic plots (base R graphics)
par(mfrow = c(3, 2))
plot(fit_kw, ask = FALSE)
# Select specific plots with customization
plot(fit_kw,
which = c(2, 5, 6), # Cook's distance, Half-normal, Pred vs Obs
type = "quantile", # Quantile residuals (recommended)
caption = list(
"2" = "Influential Points",
"5" = "Distributional Check"
),
nsim = 200, # More accurate envelope
level = 0.95
) # 95% confidence
# Modern ggplot2 version with grid arrangement
plot(fit_kw,
use_ggplot = TRUE,
arrange_plots = TRUE,
theme_fn = ggplot2::theme_bw
)
# Extract diagnostic data for custom analysis
diag <- plot(fit_kw, save_diagnostics = TRUE)
head(diag$data) # Access Cook's distance, leverage, residuals, etc.Real Data Example
# Food Expenditure Data (proportion spent on food)
data("FoodExpenditure")
food <- FoodExpenditure
food$prop <- food$food / food$income
# Fit different distributional families
fit_beta <- gkwreg(prop ~ income + persons, data = food, family = "beta")
fit_kw <- gkwreg(prop ~ income + persons, data = food, family = "kw")
fit_ekw <- gkwreg(prop ~ income + persons, data = food, family = "ekw")
# Compare families
comparison <- data.frame(
Family = c("Beta", "Kumaraswamy", "Exp. Kumaraswamy"),
LogLik = c(logLik(fit_beta), logLik(fit_kw), logLik(fit_ekw)),
AIC = c(AIC(fit_beta), AIC(fit_kw), AIC(fit_ekw)),
BIC = c(BIC(fit_beta), BIC(fit_kw), BIC(fit_ekw))
)
print(comparison)
# Visualize best fit
best_fit <- fit_kw
plot(food$income, food$prop,
xlab = "Income", ylab = "Food Proportion",
main = "Food Expenditure Pattern", pch = 16, col = "gray40"
)
income_seq <- seq(min(food$income), max(food$income), length = 100)
pred_df <- data.frame(income = income_seq, persons = median(food$persons))
lines(income_seq, predict(best_fit, pred_df), col = "red", lwd = 2)Advanced Features
Custom Optimization Control
library(gkwreg)
library(gkwdist)
# Simulate data
set.seed(123)
n <- 500
x <- runif(n, 1, 5)
x1 <- runif(n, -2, 2)
x2 <- rnorm(n)
x3 <- rnorm(n, 1, 4)
# True parameters (log link)
alpha_true <- exp(0.8 + 0.3 * x1)
beta_true <- exp(1.2 - 0.2 * x2)
# Generate response from Kumaraswamy distribution
y <- rkw(n, alpha = alpha_true, beta = beta_true)
y <- pmax(pmin(y, 1 - 1e-7), 1e-7) # Ensure strict bounds
df <- data.frame(y = y, x = x, x1 = x1, x2 = x2, x3 = x3)
# Default control (used automatically)
fit <- gkwreg(y ~ x1, data = df, family = "kw")
# Increase iterations for difficult problems
fit_robust <- gkwreg(y ~ x1,
data = df, family = "kw",
control = gkw_control(maxit = 1000, trace = 1)
)
# Try alternative optimizer
fit_bfgs <- gkwreg(y ~ x1,
data = df, family = "kw",
control = gkw_control(method = "BFGS")
)
# Fast fitting without standard errors (exploratory analysis)
fit_fast <- gkwreg(y ~ x1,
data = df, family = "kw",
control = gkw_control(hessian = FALSE)
)
# Custom starting values
fit_custom <- gkwreg(y ~ x1 + x2 | x3,
data = df, family = "kw",
control = gkw_control(
start = list(
alpha = c(0.5, 0.2, -0.1), # Intercept + 2 slopes
beta = c(1.0, 0.3) # Intercept + 1 slope
)
)
)Link Functions and Scaling
# Default: log link for all parameters
fit_default <- gkwreg(y ~ x | x, data = df, family = "kw")
# Custom link functions per parameter
fit_links <- gkwreg(y ~ x | x,
data = df, family = "kw",
link = list(alpha = "sqrt", beta = "log")
)
# Link scaling (control transformation intensity)
# Larger scale = gentler transformation, smaller = steeper
fit_scaled <- gkwreg(y ~ x | x,
data = df, family = "kw",
link_scale = list(alpha = 5, beta = 15)
)Working with Large Datasets
# Large dataset example
set.seed(456)
n_large <- 100000
x_large <- rnorm(n_large)
y_large <- rkw(n_large, alpha = exp(0.5 + 0.2 * x_large), beta = exp(1.0))
df_large <- data.frame(y = y_large, x = x_large)
# Fast fitting
fit_large <- gkwreg(y ~ x,
data = df_large, family = "kw",
control = gkw_control(hessian = FALSE)
)
# Diagnostic plots with sampling (much faster)
plot(fit_large,
which = c(1, 2, 4, 6), # Skip computationally intensive plot 5
sample_size = 5000
) # Use random sample of 5000 obsMathematical Background
The Generalized Kumaraswamy Distribution
The GKw distribution is a five-parameter family for variables on with cumulative distribution function:
where is the regularized incomplete beta function. The probability density function is:
$$f(x; \alpha, \beta, \gamma, \delta, \lambda) = \frac{\lambda \alpha \beta x^{\alpha-1}}{B(\gamma, \delta)} (1-x^{\alpha})^{\beta-1} \left[1-(1-x^{\alpha})^{\beta}\right]^{\gamma\lambda-1} \\{1-\left[1-(1-x^{\alpha})^{\beta}\right]^{\lambda}\\}^{\delta-1}$$
Parameter Roles:
- : Control basic shape (inherited from Kumaraswamy)
- : Govern tail behavior and concentration
- : Additional flexibility for skewness and peaks
Computational Engine: TMB
Template Model Builder (TMB) translates statistical models into optimized C++ code with automatic differentiation:
Under the Hood:
R Formula -> TMB C++ Template -> Automatic Differentiation ->
Compiled Object -> Fast Optimization (nlminb/optim) ->
Standard Errors (Hessian inversion)Comparison with Other Packages
| Feature | gkwreg | betareg | gamlss | brms |
|---|---|---|---|---|
| Distribution Family | GKw hierarchy (7) | Beta | 100+ | 50+ |
| Estimation | MLE (TMB/AD) | MLE | GAMLSS | Bayesian MCMC |
| Parameter Modeling | All parameters | Mean, precision | All parameters | All parameters |
| Speed (n=10k) | Fast (~1s) | Fast (~1s) | Moderate (~5s) | Slow (~5min) |
| Link Functions | 9 options + scaling | Fixed | Many | Many |
| Optimization |
gkw_control() (detailed) |
Basic | Moderate | Extensive |
| Diagnostic Plots | 6 types, dual graphics | 4 types | Extensive | Via bayesplot |
| Dependencies | gkwdist, TMB, Formula | Minimal | Many | Stan, many |
When to use gkwreg:
- Need flexible bounded distributions beyond Beta.
- Large datasets requiring fast computation.
- All parameters depend on covariates.
- Frequentist inference preferred.
Documentation and Support
-
Reference Manual:
help(package = "gkwreg") -
Vignettes:
browseVignettes("gkwreg") -
Function Help:
?gkwreg,?predict.gkwreg,?plot.gkwreg,?gkw_control - GitHub Issues: Report bugs or request features
Contributing
Contributions are welcome! Please see our Contributing Guidelines and Code of Conduct.
How to Contribute
- Report bugs or request features via GitHub Issues
- Submit pull requests for bug fixes or new features
- Improve documentation or add examples
- Share your use cases and feedback
Citation
If you use gkwreg in your research, please cite:
citation("gkwreg")Or use the BibTeX entry:
License
This package is licensed under the MIT License. See the LICENSE file for details.
| ## Author and Maintainer |
| José Evandeilton Lopes (Lopes, J. E.) | evandeilton@gmail.com | GitHub | ORCID |
| LEG - Laboratório de Estatística e Geoinformação | UFPR - Universidade Federal do Paraná, Brazil |
