Computes the probability density function (PDF) for the Kumaraswamy-Kumaraswamy
(kkw) distribution with parameters alpha (\(\alpha\)), beta
(\(\beta\)), delta (\(\delta\)), and lambda (\(\lambda\)).
This distribution is defined on the interval (0, 1).
Arguments
- x
Vector of quantiles (values between 0 and 1).
- alpha
Shape parameter
alpha> 0. Can be a scalar or a vector. Default: 1.0.- beta
Shape parameter
beta> 0. Can be a scalar or a vector. Default: 1.0.- delta
Shape parameter
delta>= 0. Can be a scalar or a vector. Default: 0.0.- lambda
Shape parameter
lambda> 0. Can be a scalar or a vector. Default: 1.0.- log_prob
Logical; if
TRUE, the logarithm of the density is returned (\(\log(f(x))\)). Default:FALSE.
Value
A vector of density values (\(f(x)\)) or log-density values
(\(\log(f(x))\)). The length of the result is determined by the recycling
rule applied to the arguments (x, alpha, beta,
delta, lambda). Returns 0 (or -Inf if
log_prob = TRUE) for x outside the interval (0, 1), or
NaN if parameters are invalid (e.g., alpha <= 0, beta <= 0,
delta < 0, lambda <= 0).
Details
The Kumaraswamy-Kumaraswamy (kkw) distribution is a special case of the
five-parameter Generalized Kumaraswamy distribution (dgkw)
obtained by setting the parameter \(\gamma = 1\).
The probability density function is given by: $$ f(x; \alpha, \beta, \delta, \lambda) = (\delta + 1) \lambda \alpha \beta x^{\alpha - 1} (1 - x^\alpha)^{\beta - 1} \bigl[1 - (1 - x^\alpha)^\beta\bigr]^{\lambda - 1} \bigl\{1 - \bigl[1 - (1 - x^\alpha)^\beta\bigr]^\lambda\bigr\}^{\delta} $$ for \(0 < x < 1\). Note that \(1/(\delta+1)\) corresponds to the Beta function term \(B(1, \delta+1)\) when \(\gamma=1\).
Numerical evaluation follows similar stability considerations as dgkw.
References
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation
Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79-88.
Examples
# \donttest{
# Example values
x_vals <- c(0.2, 0.5, 0.8)
alpha_par <- 2.0
beta_par <- 3.0
delta_par <- 0.5
lambda_par <- 1.5
# Calculate density
densities <- dkkw(x_vals, alpha_par, beta_par, delta_par, lambda_par)
print(densities)
#> [1] 0.8281038 2.1612055 0.3594057
# Calculate log-density
log_densities <- dkkw(x_vals, alpha_par, beta_par, delta_par, lambda_par,
log_prob = TRUE)
print(log_densities)
#> [1] -0.1886168 0.7706662 -1.0233034
# Check: should match log(densities)
print(log(densities))
#> [1] -0.1886168 0.7706662 -1.0233034
# Compare with dgkw setting gamma = 1
densities_gkw <- dgkw(x_vals, alpha_par, beta_par, gamma = 1.0,
delta_par, lambda_par)
print(paste("Max difference:", max(abs(densities - densities_gkw)))) # Should be near zero
#> [1] "Max difference: 8.88178419700125e-16"
# Plot the density
curve_x <- seq(0.01, 0.99, length.out = 200)
curve_y <- dkkw(curve_x, alpha_par, beta_par, delta_par, lambda_par)
plot(curve_x, curve_y, type = "l", main = "kkw Density Example",
xlab = "x", ylab = "f(x)", col = "blue")
# }