Skip to contents

All functions

bake(<step_obwoe>)
Apply the Optimal Binning Transformation
control.obwoe()
Control Parameters for Optimal Binning Algorithms
.categorical_only_algorithms()
Categorical-Only Algorithms
.numerical_only_algorithms()
Numerical-Only Algorithms
.universal_algorithms()
Universal Algorithms
.valid_algorithms()
Valid Binning Algorithms
fit_logistic_regression()
Fit Logistic Regression Model
ob_apply_woe_cat()
Apply Optimal Weight of Evidence (WoE) to a Categorical Feature
ob_apply_woe_num()
Apply Optimal Weight of Evidence (WoE) to a Numerical Feature
ob_categorical_cm()
Optimal Binning for Categorical Variables using Enhanced ChiMerge Algorithm
ob_categorical_dmiv()
Optimal Binning for Categorical Variables using Divergence Measures
ob_categorical_dp()
Optimal Binning for Categorical Variables using Dynamic Programming
ob_categorical_fetb()
Optimal Binning for Categorical Variables using Fisher's Exact Test
ob_categorical_gmb()
Optimal Binning for Categorical Variables using Greedy Merge Algorithm
ob_categorical_ivb()
Optimal Binning for Categorical Variables using Information Value Dynamic Programming
ob_categorical_jedi()
Optimal Binning for Categorical Variables using JEDI Algorithm
ob_categorical_jedi_mwoe()
Optimal Binning for Categorical Variables with Multinomial Target using JEDI-MWoE
ob_categorical_mba()
Optimal Binning for Categorical Variables using Monotonic Binning Algorithm
ob_categorical_milp()
Optimal Binning for Categorical Variables using Heuristic Algorithm
ob_categorical_mob()
Optimal Binning for Categorical Variables using Monotonic Optimal Binning (MOB)
ob_categorical_sab()
Optimal Binning for Categorical Variables using Simulated Annealing
ob_categorical_sblp()
Optimal Binning for Categorical Variables using SBLP
ob_categorical_sketch()
Optimal Binning for Categorical Variables using Sketch-based Algorithm
ob_categorical_swb()
Optimal Binning for Categorical Variables using Sliding Window Binning (SWB)
ob_categorical_udt()
Optimal Binning for Categorical Variables using a User-Defined Technique (UDT)
ob_cutpoints_cat()
Binning Categorical Variables using Custom Cutpoints
ob_cutpoints_num()
Binning Numerical Variables using Custom Cutpoints
ob_gains_table()
Compute Comprehensive Gains Table from Binning Results
ob_gains_table_feature()
Compute Gains Table for a Binned Feature Vector
ob_numerical_bb()
Optimal Binning for Numerical Variables using Branch and Bound Algorithm
ob_numerical_cm()
Optimal Binning for Numerical Variables using Enhanced ChiMerge Algorithm
ob_numerical_dmiv()
Optimal Binning using Metric Divergence Measures (Zeng, 2013)
ob_numerical_dp()
Optimal Binning for Numerical Variables using Dynamic Programming
ob_numerical_ewb()
Hybrid Optimal Binning using Equal-Width Initialization and IV Optimization
ob_numerical_fast_mdlp()
Optimal Binning using MDLP with Monotonicity Constraints
ob_numerical_fetb()
Optimal Binning using Fisher's Exact Test
ob_numerical_ir()
Optimal Binning using Isotonic Regression (PAVA)
ob_numerical_jedi()
Optimal Binning using Joint Entropy-Driven Interval Discretization (JEDI)
ob_numerical_jedi_mwoe()
Optimal Binning for Multiclass Targets using JEDI M-WOE
ob_numerical_kmb()
Optimal Binning using K-means Inspired Initialization (KMB)
ob_numerical_ldb()
Optimal Binning for Numerical Variables using Local Density Binning
ob_numerical_lpdb()
Optimal Binning using Local Polynomial Density Binning (LPDB)
ob_numerical_mblp()
Optimal Binning for Numerical Features Using Monotonic Binning via Linear Programming
ob_numerical_mdlp()
Optimal Binning for Numerical Features using Minimum Description Length Principle
ob_numerical_mob()
Optimal Binning for Numerical Features using Monotonic Optimal Binning
ob_numerical_mrblp()
Optimal Binning for Numerical Features using Monotonic Risk Binning with Likelihood Ratio Pre-binning
ob_numerical_oslp()
Optimal Binning for Numerical Variables using Optimal Supervised Learning Partitioning
ob_numerical_sketch()
Optimal Binning for Numerical Variables using Sketch-based Algorithm
ob_numerical_ubsd()
Optimal Binning for Numerical Variables using Unsupervised Binning with Standard Deviation
ob_numerical_udt()
Optimal Binning for Numerical Variables using Entropy-Based Partitioning
ob_preprocess()
Data Preprocessor for Optimal Binning
obcorr()
Compute Multiple Robust Correlations Between Numeric Variables
obwoe()
Unified Optimal Binning and Weight of Evidence Transformation
obwoe_algorithm()
Binning Algorithm Parameter
obwoe_algorithms()
List Available Algorithms
obwoe_apply()
Apply Weight of Evidence Transformations to New Data
obwoe_bin_cutoff()
Bin Cutoff Parameter
obwoe_gains()
Gains Table Statistics for Credit Risk Scorecard Evaluation
obwoe_max_bins()
Maximum Bins Parameter
obwoe_min_bins()
Minimum Bins Parameter
plot(<obwoe>)
Plot Method for obwoe Objects
plot(<obwoe_gains>)
Plot Gains Table
prep(<step_obwoe>)
Prepare the Optimal Binning Step
print(<obwoe>)
Print Method for obwoe Objects
print(<step_obwoe>)
Print Method for step_obwoe
required_pkgs(<step_obwoe>)
Required Packages for step_obwoe
step_obwoe()
Optimal Binning and WoE Transformation Step
summary(<obwoe>)
Summary Method for obwoe Objects
tidy(<step_obwoe>)
Tidy Method for step_obwoe
tunable(<step_obwoe>)
Tunable Parameters for step_obwoe